Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A stem cell secreted protein can be given to improve heart function after experimental heart attack

18.11.2010
Study also shows protein reduced scarring in heart tissue

Heart tissue and stem cells spring into action to begin repairing muscle damaged in a heart attack, and researchers at Duke University School of Medicine found that a protein naturally produced in the body may potentially play a role in accelerating heart muscle repair.

Giving the right dose of this protein named secreted frizzled related protein 2 (sfrp2) in studies of rats helped to prevent heart failure and reduce collagen layering that can form thick scar tissue after a heart attack (also called MI, or myocardial infarction). Previously the same researchers demonstrated that this protein also saves heart muscle cells from dying in response to heart attack.

These findings have the potential to be translated into a new therapy for study and evaluation in human clinical trials, said Victor Dzau, M.D., senior author of the study and James B Duke Professor of Medicine.

"We found that giving the study rats the protein sfrp2 strongly improved heart function in the critical pumping chamber, the left ventricle, after a myocardial infarction," Dr. Dzau said. "We observed that sfrp2 at therapeutic doses reduced heart muscle death and also directly prevented deposits of collagen, and thus reduced the scarring that can affect heart function."

The study was published the week of Nov. 15 in the Proceedings of the National Academy of Sciences (PNAS) Early Edition online.

Giving sfrp2 also helped prevent the heart wall from thinning, by the fourth week after injection. Because the scarring process (fibrosis) and tissue remodeling in the heart are often complete within a month of a heart attack in rats, the team performed a heart test called echocardiography (heart ultrasound) on the rats at three and four weeks after the myocardial infarction.

"We found the sfrp2 reduced the area of fibrosis in the left ventricle and also significantly decreased the ratio of anterior-to-posterior wall thickness in the heart," said Maria Mirotsou, Ph.D., a co-author and assistant professor of medicine.

Previously, the Dzau laboratory showed that a genetically modified type of stem cell that over-produced a factor called Akt dramatically reduced the size of the area affected by a heart attack and restored cardiac function in rodent hearts. The team identified sfrp2 as a key factor released by these stem cells during heart tissue survival and repair, and this study showed sfrp2 was a likely candidate for inhibiting collagen production, as well.

Other authors include lead author Wei He, Lunan Zhang, Aiguo Ni, Zhiping Zhang, Lan Mao, and Richard E. Pratt, all of the Dzau laboratory in the Mandel Center for Hypertension Research and the Division of Cardiovascular Medicine in the Duke Department of Medicine.

The work was funded by National Heart, Lung, and Blood Institute grants and grants from the Edna and Fred L. Mandel, Jr. Foundation and the Leducq Foundation.

Mary Jane Gore | EurekAlert!
Further information:
http://www.duke.edu

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>