Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


A stem cell secreted protein can be given to improve heart function after experimental heart attack

Study also shows protein reduced scarring in heart tissue

Heart tissue and stem cells spring into action to begin repairing muscle damaged in a heart attack, and researchers at Duke University School of Medicine found that a protein naturally produced in the body may potentially play a role in accelerating heart muscle repair.

Giving the right dose of this protein named secreted frizzled related protein 2 (sfrp2) in studies of rats helped to prevent heart failure and reduce collagen layering that can form thick scar tissue after a heart attack (also called MI, or myocardial infarction). Previously the same researchers demonstrated that this protein also saves heart muscle cells from dying in response to heart attack.

These findings have the potential to be translated into a new therapy for study and evaluation in human clinical trials, said Victor Dzau, M.D., senior author of the study and James B Duke Professor of Medicine.

"We found that giving the study rats the protein sfrp2 strongly improved heart function in the critical pumping chamber, the left ventricle, after a myocardial infarction," Dr. Dzau said. "We observed that sfrp2 at therapeutic doses reduced heart muscle death and also directly prevented deposits of collagen, and thus reduced the scarring that can affect heart function."

The study was published the week of Nov. 15 in the Proceedings of the National Academy of Sciences (PNAS) Early Edition online.

Giving sfrp2 also helped prevent the heart wall from thinning, by the fourth week after injection. Because the scarring process (fibrosis) and tissue remodeling in the heart are often complete within a month of a heart attack in rats, the team performed a heart test called echocardiography (heart ultrasound) on the rats at three and four weeks after the myocardial infarction.

"We found the sfrp2 reduced the area of fibrosis in the left ventricle and also significantly decreased the ratio of anterior-to-posterior wall thickness in the heart," said Maria Mirotsou, Ph.D., a co-author and assistant professor of medicine.

Previously, the Dzau laboratory showed that a genetically modified type of stem cell that over-produced a factor called Akt dramatically reduced the size of the area affected by a heart attack and restored cardiac function in rodent hearts. The team identified sfrp2 as a key factor released by these stem cells during heart tissue survival and repair, and this study showed sfrp2 was a likely candidate for inhibiting collagen production, as well.

Other authors include lead author Wei He, Lunan Zhang, Aiguo Ni, Zhiping Zhang, Lan Mao, and Richard E. Pratt, all of the Dzau laboratory in the Mandel Center for Hypertension Research and the Division of Cardiovascular Medicine in the Duke Department of Medicine.

The work was funded by National Heart, Lung, and Blood Institute grants and grants from the Edna and Fred L. Mandel, Jr. Foundation and the Leducq Foundation.

Mary Jane Gore | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht When fat cells change their colour
28.10.2016 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Aquaculture: Clear Water Thanks to Cork
28.10.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>