Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A*STAR Scientists Discover Key Component in the Mother's Egg Critical for Survival of Newly Formed Embryo

30.03.2012
An international team led by scientists at A*STAR's Institute of Medical Biology (IMB) discovered that a protein called TRIM28, normally present in the mother's egg, is essential right after fertilisation[1] to preserve certain chemical modifications or 'epigenetic marks' on a specific set of genes. This newly published study paves the way for more research to explore the role that epigenetics might play in infertility.

Previous studies have shown that both nuclear reprogramming as well as 'imprinting' are vital for the survival and later development of the embryo. However, the underlying mechanisms governing the intricate interplay of these two processes during the early embryonic phase have not been clear, until now.

Nuclear Reprogramming

Immediately after fertilisation, the majority of the 'epigenetic marks' on the DNA from the sperm and egg cells are erased. The erasure process, termed nuclear reprogramming, allows the genes from the parents to be reset so that the early embryonic cells can develop into any cell types of the body.

Genomic Imprinting

On the other hand, certain 'epigenetic marks' on a particular set of genes, some from the mother and some from the father must be preserved. These genes are said to be 'imprinted' by their parent of origin and preservation of these marks is critical for the survival of the newly formed embryo. Expression of these imprinted genes at the appropriate levels ensures proper development of the embryo. If the 'epigenetic marks' on the 'imprinted' genes are not protected, severe and multiple developmental defects occur in the embryo.

Using genetically identical mice from an inbred mouse strain[2], Drs. Davor Solter and Barbara Knowles, Senior Principal Investigators at IMB, observed that none of the embryos resulting from the fertilisation of eggs lacking TRIM28 survived. The embryos died at varying stages of development, and had very different developmental defects. Given that most genetic diseases attributed to the lack of a single gene have consistently similar defects in every affected individual, the highly varied abnormalities observed in the maternal TRIM28-deficient, yet genetically identical mice, were peculiar.

To further elucidate these findings and the role of TRIM28 during nuclear reprogramming, Dr. Daniel Messerschmidt, the first author of this paper, collaborated with Dr. Anne Ferguson-Smith, a visiting Professor at A*STAR's Singapore Institute for Clinical Sciences (SICS), from the University of Cambridge, UK. Together, they conducted a comprehensive study on the epigenetic state and the level of expression of a group of imprinted genes known to be important for development. Using highly sophisticated microarray analysis and advanced biochemical techniques, they found that not only is the presence of TRIM28 protein important during this critical period, but the timing and amount of TRIM28 made available to the newly formed embryo greatly impacts the expression of these imprinted genes at later developmental stages.

Genomic imprinting was first described by Dr. Davor Solter at the Wistar Insitute and by Dr. Azim Surani at Cambridge University three decades ago.. Recently, Dr. Solter suggested that the interplay between nuclear reprogramming and genetic imprints could be explained by a simple analogy from school where the teacher writes a long string of formulas on the black board. At the end of the class, he marks stretches to be preserved for the next day's lecture (these are the imprinted marks) and asks the cleaning lady to erase the rest (she performs the reprogramming).

Dr. Solter said, "For the longest time, we didn't know why some bits of the formulas escaped erasure. Through this study, the mystery is finally revealed! We now know TRIM28 instructs the 'cleaning lady' which part of the formulas she should preserve."

Dr. Azim Surani, who was not involved in this study, said "This elegant study on TRIM28 provides significant mechanistic insights on how maternal factors in eggs ensure faithful epigenetic inheritance that plays a critical role during development. These findings are relevant not only for the widely practised in vitro fertilisation of eggs for the treatment of human infertility, but also more generally for highlighting the importance of epigenetic mechanisms in development and disease."

Dr. Knowles, the senior author of this paper said, "Lack of TRIM28 in their eggs could explain why some women consistently suffer from multiple failed pregnancies where embryos die at different time points, manifesting multiple, different abnormalities."

Prof. Birgitte Lane, Executive Director of IMB, said, "Understanding the role of differential epigenetic modifications is important for the study of human diseases and development. This study has unravelled a critical component essential for nuclear reprogramming. The mechanistic insights revealed have far-reaching clinical implications for treatment of diseases with patient-specific cell therapies. This finding demonstrates how discoveries of fundamental research can shed light on biological questions to open new avenues of formulating therapeutic strategies for the benefits of patients."

[1] Fertilisation in humans is the fusion of an egg with a sperm to produce an embryo, a new organism.

[2] Every mouse from an inbred strain is genetically identical (i.e. a twin) to every other mouse of the same strain. The inbred mouse strain used in this study originated from The Jackson Laboratory, where this study was initiated.

Notes for editors:
The research findings described in this news release can be found in the 23 Mar 2012 issue of Science under the title, "TRIM28 Is Required for Epigenetic Stability During Mouse Oocyte to Embryo Transition" by Daniel M. Messerschmidt (1), Wilhelmine de Vries (2), Mitsuteru Ito (3), Davor Solter (1,4), Anne Ferguson-Smith (3,5*), Barbara B. Knowles (1,6)
1. Mammalian Development Group, Institute of Medical Biology, 138648 Singapore.
2. The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA.
3. Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK.
4. Duke-NUS, Graduate Medical School,169857 Singapore.
5. Singapore Institute for Clinical Sciences, 117609 Singapore.
6. Department of Biochemistry, National University of Singapore, 117597 Singapore

* No longer at Singapore Institute for Clinical Sciences

Abstract of the article can be accessed from
http://www.sciencemag.org/content/335/6075/1499.abstract
About the Institute of Medical Biology (IMB)
IMB is one of the Biomedical Sciences Institutes of the Agency for Science, Technology and Research (A*STAR). It was formed in 2007, the 7th and youngest of the BMRC Research Institutes, with a mission to study mechanisms of human disease in order to discover new and effective therapeutic strategies for improved quality of life.

IMB hosts 20 research teams of international excellence in stem cells, genetic diseases, cancer and skin and epithelial biology, and works closely with clinical collaborators to target the challenging interface between basic science and clinical medicine. Its growing portfolio of strategic research topics is targeted at translational research on the mechanisms of human diseases, with a cell-to-tissue emphasis that can help identify new therapeutic strategies for disease amelioration, cure and eradication.

For more information about IMB, please visit www.imb..a-star.edu.sg.

About A*STAR

A*STAR, the Agency for Science, Technology and Research, is Singapore's lead agency for fostering world-class scientific research and talent for a vibrant knowledge-based Singapore. A*STAR actively nurtures public sector research and development in Biomedical Sciences, Physical Sciences and Engineering, with a particular focus on fields essential to Singapore's manufacturing industry and new growth industries. It oversees 19 research institutes and consortia and supports extramural research with the universities, hospital research centres and other local and international partners. At the heart of this knowledge intensive work is human capital. Top local and international scientific talent drive knowledge creation at A*STAR research institutes. The Agency also sends scholars for undergraduate, graduate and post-doctoral training in the best universities, a reflection of the high priority A*STAR places on nurturing the next generation of scientific talent. For more information, please visit www.a-star.edu.sg.

Contact:
Sarah Chang (Dr.)
Corporate Communications
Agency for Science, Technology and Research
Tel: +65-6826-6442
Email: chang_kai_chen@a-star.edu.sg

Sarah Chang (Dr.) | Research asia research news
Further information:
http://www..a-star.edu.sg
http://www.researchsea.com

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>