Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new soldier in the war on cancer: The blind mole rat

06.03.2009
New article in the FASEB Journal shows that a gene in the 'dirty rat' holds a secret for the renewed war on cancer

If someone ever calls you a "dirty rat," consider it a compliment. A new discovery published online in the FASEB Journal (http://www.fasebj.org) shows that cellular mechanisms used by the blind mole rat to survive the very low oxygen environment of its subterranean niche are the same as those that tumors use to thrive deep in our tissues.

The net effect of this discovery is two-fold: first the blind mole rat can serve a "living tumor" in cancer research; and—perhaps more important—that unique gene in the blind mole rat becomes a prime target for new anti-cancer drugs that can "suffocate" tumors.

"President Obama said in his February 24 address to the U.S. Congress that he wants to put an end to cancer, and the boost to basic science in the stimulus package is a great start," said Gerald Weissmann, M.D., Editor-in-Chief of the FASEB Journal. "But if he wants to end the longest ongoing war in U.S. history—a War on Cancer we've been fighting since before Nixon declared it in 1971—then building on this discovery is a good place to start."

To reach their finding, American and Israeli scientists from the Universities of Illinois and Haifa conducted experiments in multiple groups of "dirty" mole rats and "regular" rats. For each type of animal, a control group was exposed to normal levels of oxygen while the experimental groups were exposed to oxygen levels ranging from 3 percent to 10 percent. In the regular rats exposed to low levels of oxygen, the gene that becomes active to protect their bodies from low oxygen (BNIP3) was shown to be active in heart and skeletal muscles. In the mole rats, however, it was discovered that their version of the BNIP3 gene was much more effective at helping them tolerate low levels of oxygen than the version of the gene in "regular" rats.

"In show biz and politics, people make comebacks all the time," Weissmann added, "but rodents aren't usually that lucky. Since the bubonic plague in the 1300s, the reputation of rats has been in the sink. If the blind mole rat ultimately helps us cure cancer, it will be the greatest comeback of all time in public health and in public relations."

Cody Mooneyhan | EurekAlert!
Further information:
http://www.faseb.org

More articles from Life Sciences:

nachricht Bare bones: Making bones transparent
27.04.2017 | California Institute of Technology

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>