Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Small Golden Cosmos

29.08.2014

Planet–satellite nanostructures from gold nanoparticles and RAFT star polymers

The cosmos in miniature: German researchers have produced nanoparticles surrounded by a group of smaller nanoparticles like a planet orbited by satellites.


They equipped larger gold nanoparticles with special star-shaped polymers, which in turn bind to smaller gold nanoparticles. As the researchers report in the journal Angewandte Chemie, it is possible to precisely control the distance between the tiny “satellites” and their central “planet” by means of the molecular weight—and thus the chain length—of the polymers.

Like all humans, researchers like good aesthetics. They take pleasure in unusual nanoscopic architectures with ordered structures and are curious about what interesting physical properties are inherent to such structures. These properties can often be extremely useful.

For example, nanoarchitectures consisting of a central nanoparticle surrounded by smaller nanoparticles at a precisely defined distance could be used as sensors, as “rulers” for measuring biological nano-objects, and as transport systems to deliver drugs specifically to tumor cells. However, researchers had not previously found a method to easily and efficiently produce a variety of planet–satellite nanosystems—a critical requirement for the investigation and practical use of such nanoarchitectures.

Christin Rossner and Philipp Vana at the University of Göttingen have now developed such a technique. At its center are polymers produced by a RAFT (reversible addition–fragmentation chain transfer) polymerization. RAFT is a technique for the targeted synthesis of polymers with a precisely defined degree of polymerization; it results in very uniform polymers with precisely controllable chain lengths.

Because this is a controlled process, it is also possible to synthesize more complicated molecular architectures, such as comb-shaped or star-shaped polymers. Rossner and Vana chose to use star polymers consisting of a center with four side chains coming out like rays. The side chains have trithiocarbonate groups at their ends. These groups bind very well to gold surfaces.

The researchers treated gold nanoparticles with these star polymers. Two to three of the “rays” bind to the surface while the remaining one or two rays remain free and available to bind the smaller satellite gold nanoparticles later. The molecular weight of the star polymers—and thus the length of the rays—can be used to precisely control the distances between the planets and satellites. The satellites can also be equipped with polymer chains that have certain chemical groups on their ends. It is thus possible to make gold nanoparticle scaffolds with a variety of reactive groups at a defined distance form the central core.

About the Author

Dr. Philipp Vana is Professor of Macromolecular Chemistry at the University of Göttingen. His research focuses on tailoring macromolecules and nanocomposites using controlled polymerizations and on the design of new functional polymers. He is also Director of the Institute of Physical Chemistry in Göttingen and has been awarded several prizes and fellowships including the prestigious Heisenberg Professorship of the DFG.

Author: Philipp Vana, Universität Göttingen (Germany), http://www.mmc.chemie.uni-goettingen.de/

Title: Planet–Satellite Nanostructures Made To Order by RAFT Star Polymers

Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201406854

Philipp Vana | Angewandte Chemie

Further reports about: Cosmos RAFT nanoparticle nanoparticles polymerization properties satellites structures technique

More articles from Life Sciences:

nachricht Two Group A Streptococcus genes linked to 'flesh-eating' bacterial infections
25.09.2017 | University of Maryland

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>