Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Small Golden Cosmos

29.08.2014

Planet–satellite nanostructures from gold nanoparticles and RAFT star polymers

The cosmos in miniature: German researchers have produced nanoparticles surrounded by a group of smaller nanoparticles like a planet orbited by satellites.


They equipped larger gold nanoparticles with special star-shaped polymers, which in turn bind to smaller gold nanoparticles. As the researchers report in the journal Angewandte Chemie, it is possible to precisely control the distance between the tiny “satellites” and their central “planet” by means of the molecular weight—and thus the chain length—of the polymers.

Like all humans, researchers like good aesthetics. They take pleasure in unusual nanoscopic architectures with ordered structures and are curious about what interesting physical properties are inherent to such structures. These properties can often be extremely useful.

For example, nanoarchitectures consisting of a central nanoparticle surrounded by smaller nanoparticles at a precisely defined distance could be used as sensors, as “rulers” for measuring biological nano-objects, and as transport systems to deliver drugs specifically to tumor cells. However, researchers had not previously found a method to easily and efficiently produce a variety of planet–satellite nanosystems—a critical requirement for the investigation and practical use of such nanoarchitectures.

Christin Rossner and Philipp Vana at the University of Göttingen have now developed such a technique. At its center are polymers produced by a RAFT (reversible addition–fragmentation chain transfer) polymerization. RAFT is a technique for the targeted synthesis of polymers with a precisely defined degree of polymerization; it results in very uniform polymers with precisely controllable chain lengths.

Because this is a controlled process, it is also possible to synthesize more complicated molecular architectures, such as comb-shaped or star-shaped polymers. Rossner and Vana chose to use star polymers consisting of a center with four side chains coming out like rays. The side chains have trithiocarbonate groups at their ends. These groups bind very well to gold surfaces.

The researchers treated gold nanoparticles with these star polymers. Two to three of the “rays” bind to the surface while the remaining one or two rays remain free and available to bind the smaller satellite gold nanoparticles later. The molecular weight of the star polymers—and thus the length of the rays—can be used to precisely control the distances between the planets and satellites. The satellites can also be equipped with polymer chains that have certain chemical groups on their ends. It is thus possible to make gold nanoparticle scaffolds with a variety of reactive groups at a defined distance form the central core.

About the Author

Dr. Philipp Vana is Professor of Macromolecular Chemistry at the University of Göttingen. His research focuses on tailoring macromolecules and nanocomposites using controlled polymerizations and on the design of new functional polymers. He is also Director of the Institute of Physical Chemistry in Göttingen and has been awarded several prizes and fellowships including the prestigious Heisenberg Professorship of the DFG.

Author: Philipp Vana, Universität Göttingen (Germany), http://www.mmc.chemie.uni-goettingen.de/

Title: Planet–Satellite Nanostructures Made To Order by RAFT Star Polymers

Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201406854

Philipp Vana | Angewandte Chemie

Further reports about: Cosmos RAFT nanoparticle nanoparticles polymerization properties satellites structures technique

More articles from Life Sciences:

nachricht Cells migrate collectively by intermittent bursts of activity
30.09.2016 | Aalto University

nachricht The structure of the BinAB toxin revealed: one small step for Man, a major problem for mosquitoes!
30.09.2016 | CNRS (Délégation Paris Michel-Ange)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-Ever 3D Printed Excavator Project Advances Large-Scale Additive Manufacturing R&D

Heavy construction machinery is the focus of Oak Ridge National Laboratory’s latest advance in additive manufacturing research. With industry partners and university students, ORNL researchers are designing and producing the world’s first 3D printed excavator, a prototype that will leverage large-scale AM technologies and explore the feasibility of printing with metal alloys.

Increasing the size and speed of metal-based 3D printing techniques, using low-cost alloys like steel and aluminum, could create new industrial applications...

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Paper – Panacea Green Infrastructure?

30.09.2016 | Event News

HLF: From an experiment to an establishment

29.09.2016 | Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

 
Latest News

First-Ever 3D Printed Excavator Project Advances Large-Scale Additive Manufacturing R&D

30.09.2016 | Materials Sciences

New Technique for Finding Weakness in Earth’s Crust

30.09.2016 | Earth Sciences

Cells migrate collectively by intermittent bursts of activity

30.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>