Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Small Golden Cosmos

29.08.2014

Planet–satellite nanostructures from gold nanoparticles and RAFT star polymers

The cosmos in miniature: German researchers have produced nanoparticles surrounded by a group of smaller nanoparticles like a planet orbited by satellites.


They equipped larger gold nanoparticles with special star-shaped polymers, which in turn bind to smaller gold nanoparticles. As the researchers report in the journal Angewandte Chemie, it is possible to precisely control the distance between the tiny “satellites” and their central “planet” by means of the molecular weight—and thus the chain length—of the polymers.

Like all humans, researchers like good aesthetics. They take pleasure in unusual nanoscopic architectures with ordered structures and are curious about what interesting physical properties are inherent to such structures. These properties can often be extremely useful.

For example, nanoarchitectures consisting of a central nanoparticle surrounded by smaller nanoparticles at a precisely defined distance could be used as sensors, as “rulers” for measuring biological nano-objects, and as transport systems to deliver drugs specifically to tumor cells. However, researchers had not previously found a method to easily and efficiently produce a variety of planet–satellite nanosystems—a critical requirement for the investigation and practical use of such nanoarchitectures.

Christin Rossner and Philipp Vana at the University of Göttingen have now developed such a technique. At its center are polymers produced by a RAFT (reversible addition–fragmentation chain transfer) polymerization. RAFT is a technique for the targeted synthesis of polymers with a precisely defined degree of polymerization; it results in very uniform polymers with precisely controllable chain lengths.

Because this is a controlled process, it is also possible to synthesize more complicated molecular architectures, such as comb-shaped or star-shaped polymers. Rossner and Vana chose to use star polymers consisting of a center with four side chains coming out like rays. The side chains have trithiocarbonate groups at their ends. These groups bind very well to gold surfaces.

The researchers treated gold nanoparticles with these star polymers. Two to three of the “rays” bind to the surface while the remaining one or two rays remain free and available to bind the smaller satellite gold nanoparticles later. The molecular weight of the star polymers—and thus the length of the rays—can be used to precisely control the distances between the planets and satellites. The satellites can also be equipped with polymer chains that have certain chemical groups on their ends. It is thus possible to make gold nanoparticle scaffolds with a variety of reactive groups at a defined distance form the central core.

About the Author

Dr. Philipp Vana is Professor of Macromolecular Chemistry at the University of Göttingen. His research focuses on tailoring macromolecules and nanocomposites using controlled polymerizations and on the design of new functional polymers. He is also Director of the Institute of Physical Chemistry in Göttingen and has been awarded several prizes and fellowships including the prestigious Heisenberg Professorship of the DFG.

Author: Philipp Vana, Universität Göttingen (Germany), http://www.mmc.chemie.uni-goettingen.de/

Title: Planet–Satellite Nanostructures Made To Order by RAFT Star Polymers

Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201406854

Philipp Vana | Angewandte Chemie

Further reports about: Cosmos RAFT nanoparticle nanoparticles polymerization properties satellites structures technique

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>