Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A small cut with a big impact

02.05.2012
During inflammation, controlled gene expression is necessary in order to allow the organism to mount an effective defense response.
For this process, the protein ARTD1 is removed from the DNA. Veterinary biochemists and molecular biologists from the University of Zurich have now elucidated this previously unclear mechanism: ARTD1 is cut into two pieces by molecular scissors, which enhances gene expression. The results are groundbreaking for our understanding of inflammatory responses and the development of new anti-inflammatory drugs.

Diseases and injuries trigger warning signals in our cells. As a result, genes are expressed and proteins produced, modified or degraded to adapt to the external danger and to protect the organism. In order to be able to produce a particular protein, the corresponding DNA segment, the gene, needs to be expressed and translated. The DNA is localized in the cell nucleus, and exists as a long string that is coiled and bound by proteins. ARTD1 is one such protein, and therefore has the potential to regulate the expression level of genes through its interaction with DNA.

If cells detect warning signals or foreign bodies like bacteria and viruses in their surroundings, the expression profile of genes changes and an inflammatory response is triggered. To induce changes in gene expression, ARTD1 is removed from particular sites of the DNA. The process by which this is brought about has, until now, remained elusive. The team headed by Professor Michael O. Hottiger from the Institute of Veterinary Biochemistry and Molecular Biology at the University of Zurich has now discovered how ARTD1’s DNA recruitment is regulated during inflammation, thereby influencing gene expression and subsequently inflammation.
Molecular scissors
As the researchers demonstrate in Molecular Cell, ARTD1 is cut into two pieces by molecular scissors, the protein caspase 7. Upon cleavage, these pieces can no longer bind to the DNA, thus allowing for more efficient gene expression.

The cleavage of proteins by caspase 7 was so far mainly associated with cell death. “The cleavage of ARTD1 by caspase 7 during inflammation constitutes a new biological function. It permits a new understanding of inflammatory responses and, in the longer term, may lead to the development of new anti-inflammatory drugs,” explains Professor Hottiger. The results are of considerable importance because inflammation underlies most diseases, including cancer, immune disorders or metabolic syndrome.

Literature:
Süheda Erener, Virginie Pétrilli, Ingrid Kassner, Roberta Minotti, Rosa Castillo, Raffaella Santoro,

Paul O. Hassa, Jürg Tschopp, and Michael O. Hottiger. Inflammasome-Activated Caspase 7 Cleaves PARP1 to Enhance the Expression of a Subset of NF-kB Target Genes. Molecular Cell. March 29, 2012. doi:10.1016/j.molcel.2012.02.016

Contact:
Professor Michael O. Hottiger
Institute of Veterinary Biochemistry and Molecular Biology
University of Zurich
Tel.: +41 44 635 54 77
Email: hottiger@vetbio.uzh.ch

Nathalie Huber | Universität Zürich
Further information:
http://www.uzh.ch

More articles from Life Sciences:

nachricht Antimicrobial substances identified in Komodo dragon blood
23.02.2017 | American Chemical Society

nachricht New Mechanisms of Gene Inactivation may prevent Aging and Cancer
23.02.2017 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>