A signal change for antifungal agents

In vivo imaging reveals the binding sites of theonellamide (TNM), a novel antifungal agent. The upper panels show a differential interference contrast micrograph of a yeast cell (left) and a fluorescent image of the cell stained with the membrane probe filipin (right), where the brightness indicates filipin binding at the cell membrane. The lower panels show a fluorescent image of a cell stained with TNM (left) and a merged image (right) of the cell labeled with TNM (red) and stained with filipin (green).

Copyright : Reproduced, in part, from Ref. 1 © 2010 Shinichi Nishimura et al.
While some fungal species, such as shiitake and enoki, are edible, some microscopic species can trigger numerous infections in the human body. Antifungal drugs are the best means to fight these parasitic species; however, because mammalian and fungal cells share many similarities, such as lipid-based membranes, these medications can produce serious side-effects.

Now, researchers led by Minoru Yoshida from the RIKEN Advanced Science Institute in Wako have characterized the biological properties of theonellamide (TNM), an antifungal natural product isolated from marine sponges1. They found that, unlike typical modes of action, TNM specifically targets ergosterol lipid molecules in fungal cell membranes, not proteins. This bonding interaction rapidly activates a protein called Rho1 to over-produce 1,3-â-D-glucan sugar chain molecules—a process that forms an aberrant fungal cell wall. This unique mechanism promises to spur development of innovative antifungal agents. “We believe that TNM is the first compound that activates membrane signaling molecules by binding to a lipid,” says Yoshida.

Despite previous efforts to identify TNM’s specific biological actions, its sub-cellular targets were unknown until now. Yoshida and colleagues used a yeast complex to generate nearly 5,000 ‘open reading frames’ (ORFs), which are long strands of DNA that can encode proteins. This was to screen for sequences with altered susceptibility to TNM—so-called ‘hit genes’. Extensive bioinformatic analysis of the chemical-genomic profiles showed that the hit genes showed traits related to sterol binding, Rho-type protein activation or inhibition, and 1,3-â-D-glucan synthesis. However, none of the hit genes showed any physical interaction with TNM, demonstrating that proteins were not the primary target of this molecule.

By synthesizing fluorescently labeled TNM derivatives and comparing their in vivo localization to filipin molecules—known membrane-binding compounds—the team discovered that TNM directly targets ergosterol and related sterols in fungal cell membranes (Fig. 1). Attachment of TNM to these lipid molecules enhanced 1,3-â-D-glucan synthesis—but only in the presence of Rho1, confirming the unprecedented signaling behavior. Further experiments on Rho1 mutants determined that TNM can independently lower membrane integrity, gradually inducing lesions into the cellular structure.

The researchers’ next task—unraveling the complex mechanisms of TNM-induced membrane signaling—may throw light on how to avoid unwanted side-effects in humans during antifungal treatments. “TNM binds to not only ergosterol but also cholesterol, a mammalian counterpart,” explains Yoshida. “Our preliminary findings show that mammalian cells rapidly and transiently change morphology upon TNM treatment—making this compound a fabulous tool to dissect the function of membrane sterols in general.”

The corresponding author for this highlight is based at the Chemical Genomics Research Group, RIKEN Advanced Science Institute.

Journal information
1. 1.Nishimura, S., Arita, Y., Honda, M., Iwamoto, K., Matsuyama, A., Shirai, A., Kawasaki, H., Kakeya, H., Kobayashi, T., Matsunaga, S. & Yoshida, M. Marine antifungal theonellamides target 3â-hydroxysterol to activate Rho1 signalling. Nature Chemical Biology 6, 519–526 (2010).

Media Contact

gro-pr Research asia research news

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors