Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A signal change for antifungal agents

13.09.2010
Chemical-genomic profiling of bioactive therapeutic compounds reveals therapeutically exploitable signaling activity at fungal cell membranes

In vivo imaging reveals the binding sites of theonellamide (TNM), a novel antifungal agent. The upper panels show a differential interference contrast micrograph of a yeast cell (left) and a fluorescent image of the cell stained with the membrane probe filipin (right), where the brightness indicates filipin binding at the cell membrane. The lower panels show a fluorescent image of a cell stained with TNM (left) and a merged image (right) of the cell labeled with TNM (red) and stained with filipin (green).

Copyright : Reproduced, in part, from Ref. 1 © 2010 Shinichi Nishimura et al.
While some fungal species, such as shiitake and enoki, are edible, some microscopic species can trigger numerous infections in the human body. Antifungal drugs are the best means to fight these parasitic species; however, because mammalian and fungal cells share many similarities, such as lipid-based membranes, these medications can produce serious side-effects.

Now, researchers led by Minoru Yoshida from the RIKEN Advanced Science Institute in Wako have characterized the biological properties of theonellamide (TNM), an antifungal natural product isolated from marine sponges1. They found that, unlike typical modes of action, TNM specifically targets ergosterol lipid molecules in fungal cell membranes, not proteins. This bonding interaction rapidly activates a protein called Rho1 to over-produce 1,3-â-D-glucan sugar chain molecules—a process that forms an aberrant fungal cell wall. This unique mechanism promises to spur development of innovative antifungal agents. “We believe that TNM is the first compound that activates membrane signaling molecules by binding to a lipid,” says Yoshida.

Despite previous efforts to identify TNM’s specific biological actions, its sub-cellular targets were unknown until now. Yoshida and colleagues used a yeast complex to generate nearly 5,000 ‘open reading frames’ (ORFs), which are long strands of DNA that can encode proteins. This was to screen for sequences with altered susceptibility to TNM—so-called ‘hit genes’. Extensive bioinformatic analysis of the chemical-genomic profiles showed that the hit genes showed traits related to sterol binding, Rho-type protein activation or inhibition, and 1,3-â-D-glucan synthesis. However, none of the hit genes showed any physical interaction with TNM, demonstrating that proteins were not the primary target of this molecule.

By synthesizing fluorescently labeled TNM derivatives and comparing their in vivo localization to filipin molecules—known membrane-binding compounds—the team discovered that TNM directly targets ergosterol and related sterols in fungal cell membranes (Fig. 1). Attachment of TNM to these lipid molecules enhanced 1,3-â-D-glucan synthesis—but only in the presence of Rho1, confirming the unprecedented signaling behavior. Further experiments on Rho1 mutants determined that TNM can independently lower membrane integrity, gradually inducing lesions into the cellular structure.

The researchers’ next task—unraveling the complex mechanisms of TNM-induced membrane signaling—may throw light on how to avoid unwanted side-effects in humans during antifungal treatments. “TNM binds to not only ergosterol but also cholesterol, a mammalian counterpart,” explains Yoshida. “Our preliminary findings show that mammalian cells rapidly and transiently change morphology upon TNM treatment—making this compound a fabulous tool to dissect the function of membrane sterols in general.”

The corresponding author for this highlight is based at the Chemical Genomics Research Group, RIKEN Advanced Science Institute.

Journal information
1. 1.Nishimura, S., Arita, Y., Honda, M., Iwamoto, K., Matsuyama, A., Shirai, A., Kawasaki, H., Kakeya, H., Kobayashi, T., Matsunaga, S. & Yoshida, M. Marine antifungal theonellamides target 3â-hydroxysterol to activate Rho1 signalling. Nature Chemical Biology 6, 519–526 (2010).

gro-pr | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/eng/research/6386
http://www.researchsea.com

More articles from Life Sciences:

nachricht At last, butterflies get a bigger, better evolutionary tree
16.02.2018 | Florida Museum of Natural History

nachricht New treatment strategies for chronic kidney disease from the animal kingdom
16.02.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>