Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A signal change for antifungal agents

13.09.2010
Chemical-genomic profiling of bioactive therapeutic compounds reveals therapeutically exploitable signaling activity at fungal cell membranes

In vivo imaging reveals the binding sites of theonellamide (TNM), a novel antifungal agent. The upper panels show a differential interference contrast micrograph of a yeast cell (left) and a fluorescent image of the cell stained with the membrane probe filipin (right), where the brightness indicates filipin binding at the cell membrane. The lower panels show a fluorescent image of a cell stained with TNM (left) and a merged image (right) of the cell labeled with TNM (red) and stained with filipin (green).

Copyright : Reproduced, in part, from Ref. 1 © 2010 Shinichi Nishimura et al.
While some fungal species, such as shiitake and enoki, are edible, some microscopic species can trigger numerous infections in the human body. Antifungal drugs are the best means to fight these parasitic species; however, because mammalian and fungal cells share many similarities, such as lipid-based membranes, these medications can produce serious side-effects.

Now, researchers led by Minoru Yoshida from the RIKEN Advanced Science Institute in Wako have characterized the biological properties of theonellamide (TNM), an antifungal natural product isolated from marine sponges1. They found that, unlike typical modes of action, TNM specifically targets ergosterol lipid molecules in fungal cell membranes, not proteins. This bonding interaction rapidly activates a protein called Rho1 to over-produce 1,3-â-D-glucan sugar chain molecules—a process that forms an aberrant fungal cell wall. This unique mechanism promises to spur development of innovative antifungal agents. “We believe that TNM is the first compound that activates membrane signaling molecules by binding to a lipid,” says Yoshida.

Despite previous efforts to identify TNM’s specific biological actions, its sub-cellular targets were unknown until now. Yoshida and colleagues used a yeast complex to generate nearly 5,000 ‘open reading frames’ (ORFs), which are long strands of DNA that can encode proteins. This was to screen for sequences with altered susceptibility to TNM—so-called ‘hit genes’. Extensive bioinformatic analysis of the chemical-genomic profiles showed that the hit genes showed traits related to sterol binding, Rho-type protein activation or inhibition, and 1,3-â-D-glucan synthesis. However, none of the hit genes showed any physical interaction with TNM, demonstrating that proteins were not the primary target of this molecule.

By synthesizing fluorescently labeled TNM derivatives and comparing their in vivo localization to filipin molecules—known membrane-binding compounds—the team discovered that TNM directly targets ergosterol and related sterols in fungal cell membranes (Fig. 1). Attachment of TNM to these lipid molecules enhanced 1,3-â-D-glucan synthesis—but only in the presence of Rho1, confirming the unprecedented signaling behavior. Further experiments on Rho1 mutants determined that TNM can independently lower membrane integrity, gradually inducing lesions into the cellular structure.

The researchers’ next task—unraveling the complex mechanisms of TNM-induced membrane signaling—may throw light on how to avoid unwanted side-effects in humans during antifungal treatments. “TNM binds to not only ergosterol but also cholesterol, a mammalian counterpart,” explains Yoshida. “Our preliminary findings show that mammalian cells rapidly and transiently change morphology upon TNM treatment—making this compound a fabulous tool to dissect the function of membrane sterols in general.”

The corresponding author for this highlight is based at the Chemical Genomics Research Group, RIKEN Advanced Science Institute.

Journal information
1. 1.Nishimura, S., Arita, Y., Honda, M., Iwamoto, K., Matsuyama, A., Shirai, A., Kawasaki, H., Kakeya, H., Kobayashi, T., Matsunaga, S. & Yoshida, M. Marine antifungal theonellamides target 3â-hydroxysterol to activate Rho1 signalling. Nature Chemical Biology 6, 519–526 (2010).

gro-pr | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/eng/research/6386
http://www.researchsea.com

More articles from Life Sciences:

nachricht Study shines light on brain cells that coordinate movement
26.06.2017 | University of Washington Health Sciences/UW Medicine

nachricht New insight into a central biological dogma on ion transport
26.06.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>