Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A signal change for antifungal agents

13.09.2010
Chemical-genomic profiling of bioactive therapeutic compounds reveals therapeutically exploitable signaling activity at fungal cell membranes

In vivo imaging reveals the binding sites of theonellamide (TNM), a novel antifungal agent. The upper panels show a differential interference contrast micrograph of a yeast cell (left) and a fluorescent image of the cell stained with the membrane probe filipin (right), where the brightness indicates filipin binding at the cell membrane. The lower panels show a fluorescent image of a cell stained with TNM (left) and a merged image (right) of the cell labeled with TNM (red) and stained with filipin (green).

Copyright : Reproduced, in part, from Ref. 1 © 2010 Shinichi Nishimura et al.
While some fungal species, such as shiitake and enoki, are edible, some microscopic species can trigger numerous infections in the human body. Antifungal drugs are the best means to fight these parasitic species; however, because mammalian and fungal cells share many similarities, such as lipid-based membranes, these medications can produce serious side-effects.

Now, researchers led by Minoru Yoshida from the RIKEN Advanced Science Institute in Wako have characterized the biological properties of theonellamide (TNM), an antifungal natural product isolated from marine sponges1. They found that, unlike typical modes of action, TNM specifically targets ergosterol lipid molecules in fungal cell membranes, not proteins. This bonding interaction rapidly activates a protein called Rho1 to over-produce 1,3-â-D-glucan sugar chain molecules—a process that forms an aberrant fungal cell wall. This unique mechanism promises to spur development of innovative antifungal agents. “We believe that TNM is the first compound that activates membrane signaling molecules by binding to a lipid,” says Yoshida.

Despite previous efforts to identify TNM’s specific biological actions, its sub-cellular targets were unknown until now. Yoshida and colleagues used a yeast complex to generate nearly 5,000 ‘open reading frames’ (ORFs), which are long strands of DNA that can encode proteins. This was to screen for sequences with altered susceptibility to TNM—so-called ‘hit genes’. Extensive bioinformatic analysis of the chemical-genomic profiles showed that the hit genes showed traits related to sterol binding, Rho-type protein activation or inhibition, and 1,3-â-D-glucan synthesis. However, none of the hit genes showed any physical interaction with TNM, demonstrating that proteins were not the primary target of this molecule.

By synthesizing fluorescently labeled TNM derivatives and comparing their in vivo localization to filipin molecules—known membrane-binding compounds—the team discovered that TNM directly targets ergosterol and related sterols in fungal cell membranes (Fig. 1). Attachment of TNM to these lipid molecules enhanced 1,3-â-D-glucan synthesis—but only in the presence of Rho1, confirming the unprecedented signaling behavior. Further experiments on Rho1 mutants determined that TNM can independently lower membrane integrity, gradually inducing lesions into the cellular structure.

The researchers’ next task—unraveling the complex mechanisms of TNM-induced membrane signaling—may throw light on how to avoid unwanted side-effects in humans during antifungal treatments. “TNM binds to not only ergosterol but also cholesterol, a mammalian counterpart,” explains Yoshida. “Our preliminary findings show that mammalian cells rapidly and transiently change morphology upon TNM treatment—making this compound a fabulous tool to dissect the function of membrane sterols in general.”

The corresponding author for this highlight is based at the Chemical Genomics Research Group, RIKEN Advanced Science Institute.

Journal information
1. 1.Nishimura, S., Arita, Y., Honda, M., Iwamoto, K., Matsuyama, A., Shirai, A., Kawasaki, H., Kakeya, H., Kobayashi, T., Matsunaga, S. & Yoshida, M. Marine antifungal theonellamides target 3â-hydroxysterol to activate Rho1 signalling. Nature Chemical Biology 6, 519–526 (2010).

gro-pr | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/eng/research/6386
http://www.researchsea.com

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>