Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


A “shark’s eye” view: Witnessing the life of a top predator


Instruments strapped onto and ingested by sharks are revealing novel insights into how one of the most feared and least understood ocean predators swims, eats and lives.

For the first time, researchers at the University of Hawaii and the University of Tokyo outfitted sharks with sophisticated sensors and video recorders to measure and see where they are going, how they are getting there, and what they are doing once they reach their destinations. (Click here for video).   

A sixgill shark with a combined sensor and video recorder attached to it swims through the ocean. The instruments are giving scientists a “shark’s eye” view of the ocean and revealing new findings about shark behavior, according to research being presented at the Ocean Sciences Meeting.

Credit: Mark Royer/University of Hawaii

Scientists are also piloting a project using instruments ingested by sharks and other top ocean predators, like tuna, to gain new awareness into these animals’ feeding habits. The instruments, which use electrical measurements to track ingestion and digestion of prey, can help researchers understand where, when and how much sharks and other predators are eating, and what they are feasting on. 

The instruments are providing scientists with a “shark’s eye” view of the ocean and greater understanding than ever before of the lives of these fish in their natural environment. 

... more about:
»Biology »Feeding »Hawaii »Marine »Ocean »Sciences »ecosystems

“What we are doing is really trying to fill out the detail of what their role is in the ocean,” said Carl Meyer, an assistant researcher at the Hawaii Institute of Marine Biology at the University of Hawaii at Manoa. “It is all about getting a much deeper understanding of sharks’ ecological role in the ocean, which is important to the health of the ocean and, by extension, to our own well-being.” 

Using the sensors and video recorders, the researchers captured unprecedented images of sharks of different species swimming in schools, interacting with other fish and moving in repetitive loops across the sea bed. They also found that sharks used powered swimming more often than a gliding motion to move through the ocean, contrary to what scientists had previously thought, and that deep-sea sharks swim in slow motion compared to shallow water species. 

“These instrument packages are like flight data recorders for sharks,” Meyer said. “They allow us to quantify a variety of different things that we haven’t been able to quantify before.”

“It has really drawn back the veil on what these animals do and answered some longstanding questions,” he added. 

Meyer and Kim Holland, a researcher also at the Hawaii Institute of Marine Biology, are presenting the new research today at the 2014 Ocean Sciences Meeting co-sponsored by the Association for the Sciences of Limnology and Oceanography, The Oceanography Society and the American Geophysical Union. 

Sharks are at the top of the ocean food chain, Meyer noted, making them an important part of the marine ecosystem, and knowing more about these fish helps scientists better understand the flow of energy through the ocean. Until now, sharks have mainly been observed in captivity, and have been tracked only to see where they traveled. 

These new observations could help shape conservation and resource management efforts, and inform public safety measures, Holland said. The instruments being used by scientists to study feeding habits could also have commercial uses, including for aquaculture, he added. 

Notes for Journalists: 

The researchers on these studies will present oral presentations about their work on Thursday, 27 February 2014 at the Ocean Sciences Meeting. The meeting is taking place from 23 – 28 February at the Hawaii Convention Center in Honolulu. For more information for members of the news media, please go to

Below are abstracts of the presentations. Both presentations are part of Session 091: Advances in approaches to monitoring the occurrence, distribution, and behavior of top predators being held Thursday 27 February from 8 a.m. to 10 a.m. local Hawaii time in room 310 Theater.

 For raw video footage, including caption and credit information, please go to


Multi-Instrument Biologging Provides New High Resolution Insight Into Shark Behavior and Biomechanics


Meyer, C., Hawaii Institute of Marine Biology, University of Hawaii at Manoa, Kaneohe, HI, USA;

Nakamura, I., International Coastal Research Center, Atmosphere and Ocean Research Institute, University of Tokyo, Kashiwanoha, Kashiwa, Chiba, Japan;

Sato, K., International Coastal Research Center, Atmosphere and Ocean Research Institute, University of Tokyo, Kashiwanoha, Kashiwa, Chiba, Japan.


In marine ecosystems, the advent of electronic tags has provided unprecedented new insights into movements of highly mobile sharks. However, until recently we have lacked high-resolution tools capable of revealing fine-scale patterns of behavior and habitat use, or providing empirical insight into swimming biomechanics of free-ranging sharks. Now a combination of high resolution, tri-axial accelerometer-magnetometer data loggers and miniature video loggers is uncovering previously unknown aspects of shark ecology. Recent deployments of these devices on a variety of coastal and deep-sea sharks in Hawaii has revealed complex, three-dimensional movements of these animals over a variety of habitats, provided a clearer understanding of shark swimming biomechanics and yielded a ‘sharks-eye’ view of interactions with other animals.


Detection and Telemetry of Feeding Events in Free Swimming Sharks and Tuna


Holland, K., Hawaii Institute of Marine Biology, University of Hawaii at Manoa, Kaneohe, HI, USA;

Meyer, C., Hawaii Institute of Marine Biology, University of Hawaii at Manoa, Kaneohe, HI, USA.


An ability to directly measure feeding events in top predators (e.g., tuna, sharks) would represent a major advance in quantifying energy flow through marine ecosystems. An appropriate device must detect these events over prolonged periods and be able to withstand large pressure changes. We hypothesized that physical changes occurring during ingestion and digestion should be quantifiable by measuring Bulk Electrical Impedance across paired electrodes. We successfully demonstrated this using a prototype tag (Wildlife Computers Inc.) to record impedance changes occurring inside the stomachs of free swimming captive sharks over multiple feeding events. Feeding and digestion produced characteristic changes in electrical impedance of the stomach contents identifiable as 5 successive phases: (1) Empty stomach, (2) Ingestion, (3) Chemical ‘lag’ phase, (4) Mechanical ‘chyme’ phase, and (5) Stomach emptying phase. The duration of the chyme phase was positively related to meal size. We recently observed these same phenomena in yellowfin and bluefin tuna. We are now deploying prototype tags in wild animals and adding accelerometry capabilities to assist in interpretation of feeding events. Preliminary results from these recent events will be presented.

Contact information for the researchers:

Carl Meyer, +1 (808) 428-4819,

Kim Holland, +1 (808) 220-0112,

Itsumi Nakamura, +81-4-7136-6402,

Katsufumi Sato, +81-4-7136-6400,

Mary Catherine Adams | American Geophysical Union
Further information:

Further reports about: Biology Feeding Hawaii Marine Ocean Sciences ecosystems

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>