Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A safe way to manipulate immune cells

09.10.2014

An optimized technique allows B cells to be transfected with extraneous DNA without the use of viruses

The introduction of foreign DNA into human cells through a process known as ‘transfection’ allows scientists to study gene expression in the laboratory and enables clinicians to treat genetic diseases. The methods commonly used for this procedure work for most cell types, except when it comes to B cells — a group of infection-fighting white blood cells in the immune system that have proven extremely difficult to transfect without the use of viruses. Viruses, however, pose a number of safety issues.


Fluorescence microscopy image showing green fluorescent protein expression in sonoporated human B cells.

© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

A team led by scientists at the A*STAR Bioprocessing Technology Institute and the A*STAR Institute of High Performance Computing has now developed a non-viral strategy to deliver DNA into this intractable cell type. By optimizing a technique termed sonoporation, the researchers managed to introduce genes into B cells with high rates of success1.

“Our work is the first to demonstrate the use of sonoporation as an alternative, non-viral method for stable and highly efficient transfection of recalcitrant B cell lines,” says biomedical engineer and study leader Andre Boon-Hwa Choo.

Sonoporation combines ultrasonic sound frequencies and tiny gas-filled bubbles to generate transient pores in the cell membrane through which DNA can travel. Choo and his colleagues tweaked the acoustic energy levels and microbubble concentrations to deliver a circular piece of DNA that they could track visually in a trio of human B cell lines.

In one cell line, for example, the researchers achieved around 43 per cent transfection efficiency through sonoporation, compared to just 3 per cent with a conventional transfection method called lipofection (see image). Through further selection techniques, the researchers enriched the population of transfected B cells to more than 70 per cent. They achieved similarly impressive results with the two other B cell lines.

According to Charlene Li Ling Yong, co-first-author of the study along with Dave Siak-Wei Ow, the sonoporation-based transfection technique can now be used in the laboratory to better understand how B cells regulate immune responses against pathogens. “It allows scientists to elucidate the biological pathways of immune responses,” says Yong.

Numerous clinical research teams are also pursuing B-cell-based gene therapies to induce tolerance against autoimmune diseases. The method described in the current study could come in particularly handy for treatments in the human body — without any of the adverse effects of viral-mediated gene therapy. “Sonoporation has the potential to be applied in vivo,” Ow says. “It offers a safer and noninvasive alternative to existing gene therapies.” 

The A*STAR-affiliated researchers contributing to this research are from the Bioprocessing Technology Institute and the Institute of High Performance Computing

Reference

  1. Yong, C. L. L., Ow, D. S.-W., Tandiono, T., Heng, L. L. M., Chan, K. K.-K., Ohl, C.-D., Klaseboer, E., Ohl, S.-W. & Choo, A. B.-H. Microbubble-mediated sonoporation for highly efficient transfection of recalcitrant human B- cell lines. Biotechnology Journal 9, 1081–1087 (2014). | article

A*STAR Research | Research SEA News
Further information:
http://www.research.a-star.edu.sg/research/7048
http://www.researchsea.com

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>