Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A safe way to manipulate immune cells

09.10.2014

An optimized technique allows B cells to be transfected with extraneous DNA without the use of viruses

The introduction of foreign DNA into human cells through a process known as ‘transfection’ allows scientists to study gene expression in the laboratory and enables clinicians to treat genetic diseases. The methods commonly used for this procedure work for most cell types, except when it comes to B cells — a group of infection-fighting white blood cells in the immune system that have proven extremely difficult to transfect without the use of viruses. Viruses, however, pose a number of safety issues.


Fluorescence microscopy image showing green fluorescent protein expression in sonoporated human B cells.

© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

A team led by scientists at the A*STAR Bioprocessing Technology Institute and the A*STAR Institute of High Performance Computing has now developed a non-viral strategy to deliver DNA into this intractable cell type. By optimizing a technique termed sonoporation, the researchers managed to introduce genes into B cells with high rates of success1.

“Our work is the first to demonstrate the use of sonoporation as an alternative, non-viral method for stable and highly efficient transfection of recalcitrant B cell lines,” says biomedical engineer and study leader Andre Boon-Hwa Choo.

Sonoporation combines ultrasonic sound frequencies and tiny gas-filled bubbles to generate transient pores in the cell membrane through which DNA can travel. Choo and his colleagues tweaked the acoustic energy levels and microbubble concentrations to deliver a circular piece of DNA that they could track visually in a trio of human B cell lines.

In one cell line, for example, the researchers achieved around 43 per cent transfection efficiency through sonoporation, compared to just 3 per cent with a conventional transfection method called lipofection (see image). Through further selection techniques, the researchers enriched the population of transfected B cells to more than 70 per cent. They achieved similarly impressive results with the two other B cell lines.

According to Charlene Li Ling Yong, co-first-author of the study along with Dave Siak-Wei Ow, the sonoporation-based transfection technique can now be used in the laboratory to better understand how B cells regulate immune responses against pathogens. “It allows scientists to elucidate the biological pathways of immune responses,” says Yong.

Numerous clinical research teams are also pursuing B-cell-based gene therapies to induce tolerance against autoimmune diseases. The method described in the current study could come in particularly handy for treatments in the human body — without any of the adverse effects of viral-mediated gene therapy. “Sonoporation has the potential to be applied in vivo,” Ow says. “It offers a safer and noninvasive alternative to existing gene therapies.” 

The A*STAR-affiliated researchers contributing to this research are from the Bioprocessing Technology Institute and the Institute of High Performance Computing

Reference

  1. Yong, C. L. L., Ow, D. S.-W., Tandiono, T., Heng, L. L. M., Chan, K. K.-K., Ohl, C.-D., Klaseboer, E., Ohl, S.-W. & Choo, A. B.-H. Microbubble-mediated sonoporation for highly efficient transfection of recalcitrant human B- cell lines. Biotechnology Journal 9, 1081–1087 (2014). | article

A*STAR Research | Research SEA News
Further information:
http://www.research.a-star.edu.sg/research/7048
http://www.researchsea.com

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>