Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A possible role for Smurf1 in pulmonary arterial hypertension

22.06.2010
Pulmonary arterial hypertension (PAH) is a progressive disease, marked by shortness of breath and fatigue which can be fatal if untreated. Increased pressure in the pulmonary artery and its branches is associated with dysfunctional growth control of endothelial and smooth muscle cells leading to excessive thickening of the blood vessel wall, obliteration of the lumen and right heart failure.

BMP (bone morphogenetic protein) receptors play an important role in preventing excess growth of vascular cells. Some individuals with PAH have mutations in BMP receptor (type II). Mutant, and to a lesser extent wild type, receptors are thought to decline in response to disease associated factors such as hypoxia and cytokines. However, the mechanisms leading to the decline in these receptors are not understood.

In the July 2010 issue of Experimental Biology and Medicine, Drs. Murakami, Mathew, Huang, Farahani, Peng, Olson and Etlinger at New York Medical College in Valhalla, NY found that a protein called Smurf1 is elevated in animal models of PAH. This protein is a ubiquitin ligase which can covalently attach ubiquitin to BMP receptors as well as regulate downstream signaling molecules. Such ubiquitin "tagging" leads to receptor endocytosis and degradation by proteasomes and/or lysosomes. Recent studies on cancer cell metastasis have linked Smurf1 with the RhoA/ROCK signaling pathway which has also been implicated in vasoconstriction and vascular remodeling in PAH. Thus, Smurf-1 may have even a broader role in PAH pathogenesis.

The researchers produced PAH in rats by treating with a chemical monocrotaline and in mice by exposure to hypoxia, two well established animal models for the disease. Increased levels of Smurf1 appeared in vascular tissue and could be visualized in endothelial and smooth muscle cells with a time course consistent with a casual role in PAH. Studies with cultured cell lines confirmed Smurf1 dependent degradation of BMP receptors. A mutated Smurf1 which lacked the ability to ligate ubiquitin was able to block BMP receptor degradation acting in a dominant negative manner. Murakami said "these results suggest that Smurf1 may be an attractive therapeutic target to block with agents like dominant negative Smurf-1 mutant or with siRNA constructs etc." Currently treatments for PAH can offer some amelioration of symptoms but no cure is available. Interfering with Smurf1 may offer promise in this regard but future research will need to confirm the role of Smurf1 in human PAH as well as explore the specificity of its actions.

Steven R. Goodman, Editor-in-Chief of Experimental Biology and Medicine said "Murakami et al have demonstrated an elevation of Smurf 1, a ubiquitin ligase, in rat models of pulmonary arterial hypertension (PAH). Further they have demonstrated that Smurf1 can degrade BMP receptors that have a known relationship to PAH. This suggests that elevation of Smurf1 may play a role in the molecular basis of PAH".

Experimental Biology and Medicine is the journal of the Society of Experimental Biology and Medicine. To learn about the benefits of society membership visit www.sebm.org. If you are interested in publishing in the journal please visit www.ebmonline.org.

Dr. Koko Murakami | EurekAlert!
Further information:
http://www.nymc.edu

More articles from Life Sciences:

nachricht Hunting pathogens at full force
22.03.2017 | Helmholtz-Zentrum für Infektionsforschung

nachricht A 155 carat diamond with 92 mm diameter
22.03.2017 | Universität Augsburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>