Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A role for calcium in taste perception

11.01.2010
Appearing in the Jan. 8 issue of JBC

Calcium may not come to mind when you think of tasty foods, but in a study appearing in the January 8 issue of JBC, Japanese researchers have provided the first demonstration that calcium channels on the tongue are the targets of compounds that can enhance taste.

In addition to molecules that directly trigger specific taste buds (salty, sweet etc.), there are other substances which have no flavor of their own but can enhance the flavors they are paired with (known as kokumi taste in Japanese cuisine).

Exploiting this enhancement could have practical uses in food modulation; for example, creating healthy foods that contain minimal sugar or salt but still elicit strong taste. At the moment, though, the mode of action for these substances is poorly understood.

However, Yuzuru Eto and colleagues examined whether calcium channels –which sense and regulate the levels of calcium in the body— might be the mechanism involved; they noted that calcium channels are closely related to the receptors that sense sweet and umami (savory) tastes and that glutathione (a common kokumi taste element) is known to interact with calcium channels.

To test their possibility, they created several small molecules that resembled glutathione and analyzed how well these compounds activated calcium channels in cell samples. Next, they diluted the same test substances in flavored water (salt water, sugar water, etc.) and asked volunteers (all trained in discriminating tastes) to rate how strong the flavors were.

The results provided a strong correlation; the molecules that induced the largest activity in calcium receptors also elicited the strongest flavor enhancement in the taste tests.

For further confirmation, the researchers tested several other known calcium channel activators, including calcium, and found all exhibited some degree of flavor enhancement, while a synthetic calcium channel blocker could suppress flavors.

This study provides new of insight into the areas of taste biology; the authors also note that calcium channels are found in the gastro-intestinal tract as well, suggesting they may be important in other aspects of eating, such as food digestion and absorption.

From the Article: "Involvement of the Calcium-sensing Receptor in Human Taste Perception" by Takeaki Ohsu, Yusuke Amino, Hiroaki Nagasaki, Tomohiko Yamanaka, Sen Takeshita, Toshihiro Hatanaka, Yutaka Maruyama, Naohiro Miyamura and Yuzuru Eto

Article link: http://www.jbc.org/content/285/2/1016.abstract

For more information, contact Ms. Naoko Obara, Public Communications Department, Ajinomoto Co., Inc., Japan; Email: naoko_obara@ajinomoto.com

The American Society for Biochemistry and Molecular Biology is a nonprofit scientific and educational organization with over 12,000 members in the United States and internationally. Most members teach and conduct research at colleges and universities. Others conduct research in various government laboratories, nonprofit research institutions and industry. The Society's student members attend undergraduate or graduate institutions.

Founded in 1906, the Society is based in Bethesda, Maryland, on the campus of the Federation of American Societies for Experimental Biology. The Society's purpose is to advance the science of biochemistry and molecular biology through publication of the Journal of Biological Chemistry, the Journal of Lipid Research, and Molecular and Cellular Proteomics, organization of scientific meetings, advocacy for funding of basic research and education, support of science education at all levels, and promoting the diversity of individuals entering the scientific work force.

For more information about ASBMB, see the Society's Web site at www.asbmb.org.

Nick Zagorski | EurekAlert!
Further information:
http://www.asbmb.org

More articles from Life Sciences:

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

nachricht The Nagoya Protocol Creates Disadvantages for Many Countries when Applied to Microorganisms
05.12.2016 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

Construction of practical quantum computers radically simplified

05.12.2016 | Information Technology

NASA's AIM observes early noctilucent ice clouds over Antarctica

05.12.2016 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>