Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new read on DNA sequencing

15.11.2010
The twisting, ladder-like form of the DNA molecule—the architectural floor plan of life—contains a universe of information critical to human health.

Enormous effort has been invested in deciphering the genetic code, including, most famously, the Human Genome Project. Nevertheless, the process of reading some three-billion nucleotide "letters" to reveal an individual's full genome remains a costly and complex undertaking.

Now biophysicist Stuart Lindsay, of the Biodesign Institute at Arizona State University, has demonstrated a technique that may lead to rapid, low cost reading of whole genomes, through recognition of the basic chemical units—the nucleotide bases that make up the DNA double helix. An affordable technique for DNA sequencing would be a tremendous advance for medicine, allowing routine clinical genomic screening for diagnostic purposes; the design of a new generation of custom-fit pharmaceuticals; and even genomic tinkering to enhance cellular resistance to viral or bacterial infection.

Lindsay is an ASU Regents' Professor and Carson Presidential Chair of Physics and Chemistry as well as director of the Biodesign Institute's Center for Single Molecule Biophysics. His group's research appears in the current issue of the journal Nature Nanotechnology.

Lindsay's technique for reading the DNA code relies on a fundamental property of matter known as quantum tunneling, which operates at the subatomic scale. According to quantum theory, elementary particles like electrons can do some very strange and counter-intuitive things, in defiance of classical laws of physics. Such sub-atomic, quantum entities possess both a particle and a wave-like nature. Part of the consequence of this is that an electron has some probability of moving from one side of a barrier to the other, regardless of the height or width of such a barrier.

Remarkably, an electron can accomplish this feat, even when the potential energy of the barrier exceeds the kinetic energy of the particle. Such behavior is known as quantum tunneling, and the flow of electrons is a tunneling current. Tunneling is confined to small distances—so small that a tunnel junction should be able to read one DNA base (there are four of them in the gentic code, A,T,C and G) at a time without interference from flanking bases. But the same sensitivity to distance means that vibrations of the DNA, or intervening water molecules, ruin the tunneling signal. So the Lindsay group has developed "recognition molecules" that "grab hold" of each base in turn, clutching the base against the electrodes that read out the signal. They call this new method "recognition tunneling."

The current paper in Nature Nanotechnology shows that single bases inside a DNA chain can indeed be read with tunneling, without interference from neighboring bases. Each base generates a distinct electronic signal, current spikes of a particular size and frequency that serve to identify each base. Surprisingly, the technique even recognizes a small chemical change that nature sometimes uses to fine-tune the expression of genes, the so called "epigenetic" code. While an individual's genetic code is the same in every cell, the epigenetic code is tissue and cell specific and unlike the genome itself, the epigenome can respond to environmental changes during an individual's life.

To read longer lengths of DNA, Lindsay's group is working to couple the tunneling readout to a nanopore—a tiny hole through which DNA is dragged, one base at a time, by an electric field. The paper in Nature Nanotechnology has something to say about this problem too. "It has always been believed that the problem with passing DNA through a nanopore is that it flies through so quickly that there is no time to read the sequence" Lindsay says. Surprisingly, the tunneling signals reported in the Nanture Nanotechnology paper last for a long time—nearly a second per base read.

To test this result, Lindsay teamed with a colleague, Robert Ros, to measure how hard one has to pull to break the complex of a DNA base plus the recognition molecules. They did this with an atomic force microscope. "These measurements confirmed the long lifetime of the complex, and also showed that the reading time could be speeded up at will by the application of a small additional pulling force" says Ros. "Thus the stage is set for combining tunneling reads with a device that passes DNA through a nanopore" says Lindsay.

Sequencing through recognition tunneling, if proven successful for whole genome reading, could represent a substantial savings in cost and hopefully, in time as well. Existing methods of DNA sequencing typically rely on cutting the full molecule into thousands of component bits, snipping apart the ladder of complementary bases and reading these fragments. Later, the pieces must be meticulously re-assembled, with the aid of massive computing power. "Direct readout of the epigenetic code holds the key to understanding why cells in different tissues are different, despite having the same genome" Lindsay adds, a reference to the new ability to read epigenetic modifications with tunneling.

Lindsay stresses much work remains to be done before the application of sequencing by recognition can become a clinical reality. "Right now, we can only read two or three bases as the tunneling probe drifts over them, and some bases are more accurately identified than others," he says. However, the group expects this to improve as future generations of recognition molecules are synthesized.

"The basic physics is now demonstrated" Lindsay says, adding "perhaps it will soon be possible to incorporate these principles into mass produced computer chips." The day of the "genome on a lap-top" might be coming sooner than previously thought possible.

Joseph Caspermeyer | EurekAlert!
Further information:
http://www.asu.edu

More articles from Life Sciences:

nachricht Toward a 'smart' patch that automatically delivers insulin when needed
18.01.2017 | American Chemical Society

nachricht 127 at one blow...
18.01.2017 | Stiftung Zoologisches Forschungsmuseum Alexander Koenig, Leibniz-Institut für Biodiversität der Tiere

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>