Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A rare partnership pays off

05.09.2011
The first chemical complex consisting of rare earth metals and boron atoms produces unexpected results heralding new synthetic chemistry techniques

Boron is an intriguing member of the periodic table because it readily forms stable compounds using only six electrons—two fewer than most other main-group elements.

This means that chemists can easily add boron to unsaturated hydrocarbons, and then use electron-rich atoms, such as oxygen, to change organoborons into versatile units such as alcohols and esters. Recently, researchers found that combining transition metals with boron ligands produces catalysts powerful enough to transform even fully saturated hydrocarbons into new organic functionalities with high selectivity.

Now, Zhaomin Hou and colleagues from the RIKEN Advanced Science Institute in Wako have made another breakthrough in this field: they have created the first-ever complexes between boron ligands and rare earth metals. Because these novel chemical combinations display a surprising ability to incorporate molecules such as carbon monoxide into their frameworks, they have potential applications that range from synthesizing organic substrates to controlling noxious emissions.

Rare earth metals are hot commodities because they are vital for products in high demand such as smartphones and electric cars. However, full chemical studies of these elements are only in their infancy since they are difficult to handle under normal conditions.

According to Hou, typical methods to prepare transition metal–boron complexes—halogen or metal exchange reactions, for example—seemed unsuitable for rare earth metals. Instead, the team used a vigorous lithium–boron compound to handle the reactive rare earth precursors, producing previously unseen scandium–(Sc–B) and gadolinium–boron (Gd–B) complexes in good yields, but not without difficulty. “Rare earth–boron compounds are air- and moisture-sensitive and sometimes thermally unstable,” says Hou. “They therefore require great care in isolation and handling.”

To determine whether or not the Sc–B complex could act as a nucleophile—an important electron-donating reagent in organic chemistry—the team reacted it with N,N,-diisopropylcarbodiimide, a molecule that easily accepts electrons to change into an amidinate salt. X-ray analysis revealed that initially, the carbodiimide became incorporated between Sc and carbon ligands on the rare earth metal, but extra quantities of the reagent became incorporated between the Sc–B bond. Furthermore, adding carbon monoxide to this mixture also caused a rare earth–boron insertion, accompanied by an unexpected rearrangement into a cyclic structure.

Because chemists rely on insertion reactions to efficiently transform ligands into a diverse range of products, these findings should enable development of brand new synthetic techniques—opportunities that Hou and his team are actively pursuing.

The corresponding author for this highlight is based at the Organometallic Chemistry Laboratory, RIKEN Advanced Science Institute

Reference:
Li, S., Cheng, J., Chen, Y., Nishiura, M. & Hou, Z. Rare earth metal boryl complexes: Synthesis, structure, and insertion chemistry. Angewandte Chemie International Edition 50, 6360–6363 (2011).

gro-pr | Research asia research news
Further information:
http://www.riken.jp
http://www.researchsea.com

More articles from Life Sciences:

nachricht Not of Divided Mind
19.01.2017 | Hertie-Institut für klinische Hirnforschung (HIH)

nachricht CRISPR meets single-cell sequencing in new screening method
19.01.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>