Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A rare partnership pays off

05.09.2011
The first chemical complex consisting of rare earth metals and boron atoms produces unexpected results heralding new synthetic chemistry techniques

Boron is an intriguing member of the periodic table because it readily forms stable compounds using only six electrons—two fewer than most other main-group elements.

This means that chemists can easily add boron to unsaturated hydrocarbons, and then use electron-rich atoms, such as oxygen, to change organoborons into versatile units such as alcohols and esters. Recently, researchers found that combining transition metals with boron ligands produces catalysts powerful enough to transform even fully saturated hydrocarbons into new organic functionalities with high selectivity.

Now, Zhaomin Hou and colleagues from the RIKEN Advanced Science Institute in Wako have made another breakthrough in this field: they have created the first-ever complexes between boron ligands and rare earth metals. Because these novel chemical combinations display a surprising ability to incorporate molecules such as carbon monoxide into their frameworks, they have potential applications that range from synthesizing organic substrates to controlling noxious emissions.

Rare earth metals are hot commodities because they are vital for products in high demand such as smartphones and electric cars. However, full chemical studies of these elements are only in their infancy since they are difficult to handle under normal conditions.

According to Hou, typical methods to prepare transition metal–boron complexes—halogen or metal exchange reactions, for example—seemed unsuitable for rare earth metals. Instead, the team used a vigorous lithium–boron compound to handle the reactive rare earth precursors, producing previously unseen scandium–(Sc–B) and gadolinium–boron (Gd–B) complexes in good yields, but not without difficulty. “Rare earth–boron compounds are air- and moisture-sensitive and sometimes thermally unstable,” says Hou. “They therefore require great care in isolation and handling.”

To determine whether or not the Sc–B complex could act as a nucleophile—an important electron-donating reagent in organic chemistry—the team reacted it with N,N,-diisopropylcarbodiimide, a molecule that easily accepts electrons to change into an amidinate salt. X-ray analysis revealed that initially, the carbodiimide became incorporated between Sc and carbon ligands on the rare earth metal, but extra quantities of the reagent became incorporated between the Sc–B bond. Furthermore, adding carbon monoxide to this mixture also caused a rare earth–boron insertion, accompanied by an unexpected rearrangement into a cyclic structure.

Because chemists rely on insertion reactions to efficiently transform ligands into a diverse range of products, these findings should enable development of brand new synthetic techniques—opportunities that Hou and his team are actively pursuing.

The corresponding author for this highlight is based at the Organometallic Chemistry Laboratory, RIKEN Advanced Science Institute

Reference:
Li, S., Cheng, J., Chen, Y., Nishiura, M. & Hou, Z. Rare earth metal boryl complexes: Synthesis, structure, and insertion chemistry. Angewandte Chemie International Edition 50, 6360–6363 (2011).

gro-pr | Research asia research news
Further information:
http://www.riken.jp
http://www.researchsea.com

More articles from Life Sciences:

nachricht Antimicrobial substances identified in Komodo dragon blood
23.02.2017 | American Chemical Society

nachricht New Mechanisms of Gene Inactivation may prevent Aging and Cancer
23.02.2017 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>