Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A protein shows plants the oxygen concentration of their surroundings

24.10.2011
Plants need water to grow, but every hobby gardener knows that you shouldn’t carry this to excess either.

During waterlogging or flooding, plants can’t take up enough oxygen that they urgently need for their cellular respiration and energy production. Plants respond to this state of hypoxia with the activation of certain genes that help them cope with the stress. Until now it was unclear how plants are sensing the oxygen concentration. Recent experiments show that under hypoxia a protein that can activate genes, a so-called transcription factor, is released from the cell membrane to accumulate in the nucleus and trigger the expression of stress response genes.

Although plants produce oxygen via photosynthesis, in darkness they rely on external oxygen supply just like humans and animals. If the plants are cut off from oxygen supply, as a result of flooding for example, the energy production in the cells comes to a halt and the plants have to adjust their metabolism to the changed conditions. Hitherto, little was known about the way organisms sense the oxygen concentration of their surroundings. According to new discoveries the key component of this pathway in plants is a protein called RAP2.12, which is capable of binding to certain regions of DNA, thereby triggering the transcription of stress response genes. Scientists observed that plants with an overexpression of RAP2.12 show an enhanced tolerance to submergence and a better recovery after flooding events.

Of special importance seems to be the N-terminus of a protein, so to say the beginning of the amino acid chain. If this amino acid sequence is altered by adding or removing amino acids the plant’s response to low oxygen availability deteriorates. Under normal aerobic conditions RAP2.12 is attached to the cell membrane. When the oxygen level declines, the protein detaches from the membrane and accumulates in the nucleus where it can fulfill its duties as a transcription factor and activate certain genes. As soon as the oxygen availability rises to normal levels RAP2.12 is quickly degraded to stop the transcription of the stress response genes. In plants that express an N-terminally altered RAP2.12 the researchers found the protein to be present in the nucleus even before the oxygen stress started. Under hypoxia the modified protein accumulated in the nucleus but it was not degraded when the oxygen levels rose to normal conditions.

Still, it remained unclear how RAP2.12 sensed the change in oxygen concentration. Scientists of the Max-Planck-Institute of Molecular Plant Physiology together with colleagues from Italy and the Netherlands discovered that the so-called N-end rule comes into play. “According to the N-end rule the first amino acid of a protein determines its life span”, explains group leader Joost van Dongen, “there are stabilizing and destabilizing amino acids”. Cysteine, the first amino acid of RAP2.12 belongs to the group of destabilizers – but only, if oxygen is present. Under hypoxia the life span of RAP2.12 increases, it detaches from the cell membrane and makes its way into the nucleus where it triggers the expression of stress response genes. When the oxygen level inside the cell goes back to normal RAP2.12 is degraded in less than one hour. “Our discovery of RAP2.12 as a central component of the oxygen sensing mechanism in plants opens up interesting possibilities to increase the flooding tolerance in crops” illustrates van Dongen. After all, about ten percent of the arable land worldwide is subject to temporary flooding each year.

Contact
Joost T. van Dongen
Max-Planck-Institute of Molecular Plant Physiology
Tel. 0331/567 8353
Dongen@mpimp-golm.mpg.de
Claudia Steinert
Public Relations
Max-Planck-Institute of Molecular Plant Physiology
Tel. 0331/567 8275
Steinert@mpimp-golm.mpg.de
http://www.mpimp-golm.mpg.de
Original Work
Francesco Licausi, Monika Kosmacz, Daan A. Weits, Beatrice Giuntoli, Federico M. Giorgi, Laurentius A. C. J. Voesenek, Pierdomenico Perata und Joost T. van Dongen
Oxygen sensing in plants is mediated by an N-end rule pathway for protein destabilisation

Nature, Online publication 23 October, DOI: 10.1038/nature10536

Ursula Ross-Stitt | Max-Planck-Institut
Further information:
http://www.mpimp-golm.mpg.de

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>