Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A protein safeguards against cataracts

24.10.2013
Activation mechanism of a protective protein in the ocular lens resolved

The refractive power of the human eye lens relies on a densely packed mixture of proteins. Special protective proteins ensure that these proteins do not clump together as time passes.


Storage form (24-mer) and active forms of aB-crystallin which protect against cataract

When this protective mechanism fails, the ocular lens becomes clouded – the patient develops a cataract. Scientists at the Technische Universitaet Muenchen (TUM) have now resolved the activation mechanism of one of these protective proteins, laying the foundation for the development of new therapeutic alternatives.

The lens of the human eye is made up of a highly concentrated protein solution that imparts the eye its high refractive power. Yet, despite this high protein content the ocular lens must remain clear and transparent. To this end ocular lens cells have developed a remarkable strategy: They have thrown overboard the complex machinery present in all other cells of the human body for building up and breaking down proteins. Instead, lens proteins are created only once in a lifetime – during embryonic development. They are as old as the organism itself. To make them last a lifetime, the proteins are kept permanently in a dissolved state. If they clump together, the lens clouds over and the patient gets cataracts.

Alternative to surgery

To date, this condition could only be treated surgically by replacing the clouded lens with an artificial one. However, if the precise mechanism by which lens proteins are kept in a dissolved state were understood, it would open up new avenues for treatment. So, how does the cell manage to keep the proteins soluble for so long? The magic lies in two proteins, αA-crystallin and its relative, αB-crystallin. They are the best-known representatives of the class of so-called small heat shock proteins. They play an important role in all human cells, since they prevent other proteins from turning into useless clumps when subjected to strong heat or cell stress.

What exactly these protective proteins look like and how they act remained shrouded in mystery for a long time, in spite of intensive research. “The great challenge in the analysis of these two crystallin types lies in their inordinate variety,” explains Johannes Buchner, professor for biotechnology at the Technische Universitaet Muenchen. “These proteins exist as a mixture of very different forms, each comprising a variable number of subunits. This makes it very difficult to distinguish the individual structures from one another.”

Molecular switch

In 2009, in very close collaboration with Sevil Weinkauf, professor for electron microscopy at the Technische Universitaet Muenchen, the first part of the αB-crystallin puzzle fell into place. The team successfully deciphered the molecular structure of the most important form of this versatile protein – a molecule comprising 24 subunits. Under normal conditions, i.e. when the cell is not exposed to stress, this complex is the most common variant. However, it is merely an idle form that contributes little to the prevention of clumping in other proteins. It was clear that there must be another molecular switch that triggers the protective protein.

It is this trigger mechanism that the team headed by Buchner and Weinkauf uncovered now. When a cell is exposed to stress, for instance when subjected to heat, phosphate groups are attached to a specific region of the protein. The negative charges of these phosphates break the links between the subunits and the large complexes consequently disintegrate into numerous smaller ones of only six or twelve subunits each. As a result of this breakup, the regions at the ends of the complexes become more flexible allowing the molecules to dock up with different partners, thereby preventing them from clumping – the protective protein is now active.

Interdisciplinary cooperation

The success of the scientists can be traced back above all to the interdisciplinary combination of biochemical and electron-microscopic methodologies. Aligning the information from the two-dimensional protein disintegration images with the manifold three-dimensional structures of αB-crystallin proved particularly difficult. “Imagine you only have a few pictures of a coffee cup’s shadow cast and want to infer the shape of the cup from that,” Weinkauf explains to illustrate the problem. “Now, if you think that sounds difficult, try to imagine you have not just a single cup, but a cupboard full of china that you want to deduce from the shadow casts. It is precisely this daunting challenge that we met for αB-crystallin.”

The newly acquired insights into the αB-crystallin mode of action form a solid footing for new therapeutic approaches. For instance, medication to treat cataracts could be developed: it would trigger the αB-crystallin activation mechanism to clear up clouded ocular lenses. But αB-crystallin also plays a role in other tissue cells. In cancer cells, for example, it is overly active and interferes with the so-called programmed cell death. In this case new medication would aim at inhibiting the protein.

The work has been funded by German Research Foundation (Cluster of Excellence Center for Integrated Protein Science Munich (CIPSM) and SFB 1035).

Publications:

Jirka Peschek, Nathalie Braun, Julia Rohrberg, Katrin Christiane Back, Thomas Kriehuber, Andreas Kastenmüller, Sevil Weinkauf and Johannes Buchner: Regulated structural transitions unleash the chaperone activity of αB-Crystallin, PNAS Early Edition, 2013

Contact:

Prof. Johannes Buchner
Technische Universität München
Department of Chemistry
Lichtenbergstraße 4, 85748 Garching, Germany
Tel.: +49 89 289 13340
Fax: +49 89 289 13345
E-Mail
Prof. Sevil Weinkauf
Tel.: +49 89 289 – 13517
Fax: +49 89 289 - 13521

Dr. Andreas Battenberg | EurekAlert!
Further information:
http://www.tum.de

Further reports about: human eye protective protein three-dimensional structure

More articles from Life Sciences:

nachricht 'Lipid asymmetry' plays key role in activating immune cells
20.02.2018 | Biophysical Society

nachricht New printing technique uses cells and molecules to recreate biological structures
20.02.2018 | Queen Mary University of London

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

'Lipid asymmetry' plays key role in activating immune cells

20.02.2018 | Life Sciences

MRI technique differentiates benign breast lesions from malignancies

20.02.2018 | Medical Engineering

Major discovery in controlling quantum states of single atoms

20.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>