Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A protein safeguards against cataracts

24.10.2013
Activation mechanism of a protective protein in the ocular lens resolved

The refractive power of the human eye lens relies on a densely packed mixture of proteins. Special protective proteins ensure that these proteins do not clump together as time passes.


Storage form (24-mer) and active forms of aB-crystallin which protect against cataract

When this protective mechanism fails, the ocular lens becomes clouded – the patient develops a cataract. Scientists at the Technische Universitaet Muenchen (TUM) have now resolved the activation mechanism of one of these protective proteins, laying the foundation for the development of new therapeutic alternatives.

The lens of the human eye is made up of a highly concentrated protein solution that imparts the eye its high refractive power. Yet, despite this high protein content the ocular lens must remain clear and transparent. To this end ocular lens cells have developed a remarkable strategy: They have thrown overboard the complex machinery present in all other cells of the human body for building up and breaking down proteins. Instead, lens proteins are created only once in a lifetime – during embryonic development. They are as old as the organism itself. To make them last a lifetime, the proteins are kept permanently in a dissolved state. If they clump together, the lens clouds over and the patient gets cataracts.

Alternative to surgery

To date, this condition could only be treated surgically by replacing the clouded lens with an artificial one. However, if the precise mechanism by which lens proteins are kept in a dissolved state were understood, it would open up new avenues for treatment. So, how does the cell manage to keep the proteins soluble for so long? The magic lies in two proteins, αA-crystallin and its relative, αB-crystallin. They are the best-known representatives of the class of so-called small heat shock proteins. They play an important role in all human cells, since they prevent other proteins from turning into useless clumps when subjected to strong heat or cell stress.

What exactly these protective proteins look like and how they act remained shrouded in mystery for a long time, in spite of intensive research. “The great challenge in the analysis of these two crystallin types lies in their inordinate variety,” explains Johannes Buchner, professor for biotechnology at the Technische Universitaet Muenchen. “These proteins exist as a mixture of very different forms, each comprising a variable number of subunits. This makes it very difficult to distinguish the individual structures from one another.”

Molecular switch

In 2009, in very close collaboration with Sevil Weinkauf, professor for electron microscopy at the Technische Universitaet Muenchen, the first part of the αB-crystallin puzzle fell into place. The team successfully deciphered the molecular structure of the most important form of this versatile protein – a molecule comprising 24 subunits. Under normal conditions, i.e. when the cell is not exposed to stress, this complex is the most common variant. However, it is merely an idle form that contributes little to the prevention of clumping in other proteins. It was clear that there must be another molecular switch that triggers the protective protein.

It is this trigger mechanism that the team headed by Buchner and Weinkauf uncovered now. When a cell is exposed to stress, for instance when subjected to heat, phosphate groups are attached to a specific region of the protein. The negative charges of these phosphates break the links between the subunits and the large complexes consequently disintegrate into numerous smaller ones of only six or twelve subunits each. As a result of this breakup, the regions at the ends of the complexes become more flexible allowing the molecules to dock up with different partners, thereby preventing them from clumping – the protective protein is now active.

Interdisciplinary cooperation

The success of the scientists can be traced back above all to the interdisciplinary combination of biochemical and electron-microscopic methodologies. Aligning the information from the two-dimensional protein disintegration images with the manifold three-dimensional structures of αB-crystallin proved particularly difficult. “Imagine you only have a few pictures of a coffee cup’s shadow cast and want to infer the shape of the cup from that,” Weinkauf explains to illustrate the problem. “Now, if you think that sounds difficult, try to imagine you have not just a single cup, but a cupboard full of china that you want to deduce from the shadow casts. It is precisely this daunting challenge that we met for αB-crystallin.”

The newly acquired insights into the αB-crystallin mode of action form a solid footing for new therapeutic approaches. For instance, medication to treat cataracts could be developed: it would trigger the αB-crystallin activation mechanism to clear up clouded ocular lenses. But αB-crystallin also plays a role in other tissue cells. In cancer cells, for example, it is overly active and interferes with the so-called programmed cell death. In this case new medication would aim at inhibiting the protein.

The work has been funded by German Research Foundation (Cluster of Excellence Center for Integrated Protein Science Munich (CIPSM) and SFB 1035).

Publications:

Jirka Peschek, Nathalie Braun, Julia Rohrberg, Katrin Christiane Back, Thomas Kriehuber, Andreas Kastenmüller, Sevil Weinkauf and Johannes Buchner: Regulated structural transitions unleash the chaperone activity of αB-Crystallin, PNAS Early Edition, 2013

Contact:

Prof. Johannes Buchner
Technische Universität München
Department of Chemistry
Lichtenbergstraße 4, 85748 Garching, Germany
Tel.: +49 89 289 13340
Fax: +49 89 289 13345
E-Mail
Prof. Sevil Weinkauf
Tel.: +49 89 289 – 13517
Fax: +49 89 289 - 13521

Dr. Andreas Battenberg | EurekAlert!
Further information:
http://www.tum.de

Further reports about: human eye protective protein three-dimensional structure

More articles from Life Sciences:

nachricht Warming ponds could accelerate climate change
21.02.2017 | University of Exeter

nachricht An alternative to opioids? Compound from marine snail is potent pain reliever
21.02.2017 | University of Utah

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>