Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


A protein atlas of the brain


Max Planck scientists quantify all proteins of the mouse brain

Just as in the Middle Ages when there were still many uncharted areas on Earth, researchers today are aware that there is still a great deal to learn about cells in our microcosm. But instead of sextants and compasses, researchers nowadays use modern methods such as mass spectrometry to look into the world of protein molecules.

What looks like an island is actually a schematic representation of a mouse brain. Researchers have now analyzed the mouse brain proteome and summarized the data in an atlas.

© MPI of Biochemistry/ K. Scharma

Neuroscientists are focussed particularly on resolving brain complexity with its billions of specialized cells. To understand the brain’s functions, scientists from the Max Planck Institutes of Biochemistry in Martinsried and Experimental Medicine in Göttingen have for the first time quantified the entire set of proteins ‒ the proteome ‒ in the adult mouse brain. The information about which proteins and how many of them are found in the various cell types and regions has been summarized in a protein atlas.

The brain consists of hundreds of billions of interconnected cells which communicate with one another. Different cell types specialize in different functions. Nerve cells transmit and process stimuli from outside; distinct glial cells supply them with nutrients, regulate the flow of blood in the brain, help in isolating nerve fibres and perform tasks in the immune system.

Cells are comprised of proteins which are the functional building blocks. They act as small molecular machines and give the cell its structure. The information for synthesis of protein molecules is encoded in DNA and RNA; biomolecules which have been extensively examined in the brain.

“Up to now, however, it was not known which and how many proteins are produced in the different, highly specialized cells or even how the numbers of proteins in the individual regions differ”, explains neuroscientist Mikael Simons. “To examine this, we needed modern measuring and analysis methods in order to be able to record and evaluate these enormous numbers of proteins.”

Together with protein research specialists, a team headed by Matthias Mann in Martinsried, the scientists further developed the mass spectrometry technology for in-depth profiling of brain proteins in a rapid, reproducible and a quantitative fashion.

They were able to show that there are around 13,000 different proteins in the adult mouse brain. The quantity of proteins in the different cell types and brain regions, and how they differ from one another can now be found in the recently established protein atlas at The protein data presented there from five different cell types and ten regions in the mouse brain constitute the most comprehensive collection to date.

This deep proteome investigation should serve as a rich resource for analyses of brain development and function. “Surprisingly, only 10 per cent of all proteins are cell type-specific”, explains Kirti Sharma, lead author of the study. “These cell-specific proteins are mostly found on the surface of the cell.”

The large majority – 90 per cent of all proteins – are found in all cell types. As in a satellite view of previously uncharted landscapes, the researchers have created a protein atlas based on the most comprehensive data collection that should help in the development of new treatments for alleviating brain diseases.


Dr. Christiane Menzfeld
Max Planck Institute of Biochemistry, Martinsried
Phone: +49 89 8578-2824

Fax: +49 89 8578-3777


Prof. Dr. Matthias Mann
Max Planck Institute of Biochemistry, Martinsried
Phone: +49 89 8578-2557

Fax: +49 89 8578-2219


Original publication
K. Sharma, S. Schmitt, C. G. Bergner, S. Tyanova, N. Kannaiyan, N. Manrique-Hoyos, K. Kongi, L. Cantuti, U.K. Hanisch, M.A. Philips, M.J. Rossner, M. Mann & M. Simons

Cell type- and brain region-resolved mouse brain proteome.

Nature Neuroscience, November 2015 DOI: 10.1038/nn.4160

Dr. Christiane Menzfeld | Max Planck Institute of Biochemistry, Martinsried
Further information:

More articles from Life Sciences:

nachricht Molecular doorstop could be key to new tuberculosis drugs
20.03.2018 | Rockefeller University

nachricht Modified biomaterials self-assemble on temperature cues
20.03.2018 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Physicists made crystal lattice from polaritons

20.03.2018 | Physics and Astronomy

Mars' oceans formed early, possibly aided by massive volcanic eruptions

20.03.2018 | Physics and Astronomy

Thawing permafrost produces more methane than expected

20.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>