Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new opportunity for hepatitis C research

05.07.2010
Scientists at TWINCORE develop new model approaches for HCV research.

The hepatitis C virus is highly specialised. We humans are its natural hosts. The only other living organisms that could be infected with the hepatitis C virus in the lab are chimpanzees. Nevertheless it is – from the viewpoint of the virus – highly successful: around 170 million people are chronically infected with the virus. And with the chronic infection the risk of developing liver cancer also increases.

Researchers worldwide are working to develop vaccines and medication to combat the virus. The problem is that although they are able to research in liver cell cultures, when they want to find out how the immune system controls an infection or whether possible vaccines are effective research comes up against a brick wall: tests at such an early stage are unthinkable for humans or chimpanzees.

At TWINCORE researchers are now adapting the HCV to mice, thus enabling immunologists and vaccine researchers to take the next steps against this illness in the future. Because the immune system of mice is very similar to that of humans and it is only when vaccines are successful and safe in animal experiments that researchers can take the risk of transferring them to humans.

The fact that HCV can only infect humans and chimpanzees is partly down to the highly complicated mechanism with which it accesses the cell. The virus has to first bind four different molecules on the surface of our liver cells. This triggers a mechanism in our cells that transports the virus into the liver cells. "Mice also have these receptors on their liver cells in principle," says scientist Julia Bitzegeio of the Department of Experimental Virology at TWINCORE, "however, they do not fit those on the surface of the virus."

The two molecules that cause particular difficulty are called CD81 and occludin – these need to be human, otherwise the virus has no chance of infecting the cell. To make the HCV "mouse-capable" the researchers resorted to a trick: they have removed the CD81 receptor from human liver cells and replaced it with mouse CD81. In an electrical field they then tore tiny holes in the cell membrane before inserting the HC virus artificially through these holes. "The virus reproduced inside the cells and we repeatedly inserted the virus into the altered liver cells," explains Julia Bitzegeio. This led to the highly transformable virus gradually changing until it was able to penetrate the cells with mouse CD81 receptor even without assistance.

"In this selection process the surface of the virus altered so much that it continued to infect human cells very quickly, but also simple mouse cells containing the four mouse variants of the HCV receptors," says Research Group Leader Professor Thomas Pietschmann. The mouse-adapted virus is able to penetrate the mouse cells; however, the human specialisation of the HC virus is so high that it is unable to reproduce in the cells. "Successful infiltration is the first step towards a new small animal model, one that is urgently required for immunological investigations and the development of vaccines against HCV."

TWINCORE is an joint venture between Helmholtz-Center for Infection Research at Braunschweig an the Hannover Medical School.

Literature: Bitzegeio J, Bankwitz D, Hueging K, Haid S, Brohm C, et al. (2010) Adaptation of Hepatitis C Virus to Mouse CD81 Permits Infection of Mouse Cells in the Absence of Human Entry Factors. PLoS Pathog 6(7): e1000978. doi:10.1371/journal.ppat.1000978

Further information: http://www.twincore.de
Pictures: presse@twincore.de
Legend: Infected human cells with miceCD81(Copyright: TWINCORE)
Contact:
Prof. Dr. Thomas Pietschmann, thomas.pietschmann(at)twincore.de
Tel: +49 (0)511-220027-130
Julia Bitzegeio, julia.bitzegeio(at)twincore.de
Tel: +49 (0)511-220027-138

Dr. Bastian Dornbach | idw
Further information:
http://www.twincore.de
http://www.helmholtz-hzi.de

More articles from Life Sciences:

nachricht New application for acoustics helps estimate marine life populations
16.01.2018 | University of California - San Diego

nachricht Unexpected environmental source of methane discovered
16.01.2018 | University of Washington Health Sciences/UW Medicine

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Gran Chaco: Biodiversity at High Risk

17.01.2018 | Ecology, The Environment and Conservation

Only an atom thick: Physicists succeed in measuring mechanical properties of 2D monolayer materials

17.01.2018 | Physics and Astronomy

Fraunhofer HHI receives AIS Technology Innovation Award 2018 for 3D Human Body Reconstruction

17.01.2018 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>