Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new opportunity for hepatitis C research

05.07.2010
Scientists at TWINCORE develop new model approaches for HCV research.

The hepatitis C virus is highly specialised. We humans are its natural hosts. The only other living organisms that could be infected with the hepatitis C virus in the lab are chimpanzees. Nevertheless it is – from the viewpoint of the virus – highly successful: around 170 million people are chronically infected with the virus. And with the chronic infection the risk of developing liver cancer also increases.

Researchers worldwide are working to develop vaccines and medication to combat the virus. The problem is that although they are able to research in liver cell cultures, when they want to find out how the immune system controls an infection or whether possible vaccines are effective research comes up against a brick wall: tests at such an early stage are unthinkable for humans or chimpanzees.

At TWINCORE researchers are now adapting the HCV to mice, thus enabling immunologists and vaccine researchers to take the next steps against this illness in the future. Because the immune system of mice is very similar to that of humans and it is only when vaccines are successful and safe in animal experiments that researchers can take the risk of transferring them to humans.

The fact that HCV can only infect humans and chimpanzees is partly down to the highly complicated mechanism with which it accesses the cell. The virus has to first bind four different molecules on the surface of our liver cells. This triggers a mechanism in our cells that transports the virus into the liver cells. "Mice also have these receptors on their liver cells in principle," says scientist Julia Bitzegeio of the Department of Experimental Virology at TWINCORE, "however, they do not fit those on the surface of the virus."

The two molecules that cause particular difficulty are called CD81 and occludin – these need to be human, otherwise the virus has no chance of infecting the cell. To make the HCV "mouse-capable" the researchers resorted to a trick: they have removed the CD81 receptor from human liver cells and replaced it with mouse CD81. In an electrical field they then tore tiny holes in the cell membrane before inserting the HC virus artificially through these holes. "The virus reproduced inside the cells and we repeatedly inserted the virus into the altered liver cells," explains Julia Bitzegeio. This led to the highly transformable virus gradually changing until it was able to penetrate the cells with mouse CD81 receptor even without assistance.

"In this selection process the surface of the virus altered so much that it continued to infect human cells very quickly, but also simple mouse cells containing the four mouse variants of the HCV receptors," says Research Group Leader Professor Thomas Pietschmann. The mouse-adapted virus is able to penetrate the mouse cells; however, the human specialisation of the HC virus is so high that it is unable to reproduce in the cells. "Successful infiltration is the first step towards a new small animal model, one that is urgently required for immunological investigations and the development of vaccines against HCV."

TWINCORE is an joint venture between Helmholtz-Center for Infection Research at Braunschweig an the Hannover Medical School.

Literature: Bitzegeio J, Bankwitz D, Hueging K, Haid S, Brohm C, et al. (2010) Adaptation of Hepatitis C Virus to Mouse CD81 Permits Infection of Mouse Cells in the Absence of Human Entry Factors. PLoS Pathog 6(7): e1000978. doi:10.1371/journal.ppat.1000978

Further information: http://www.twincore.de
Pictures: presse@twincore.de
Legend: Infected human cells with miceCD81(Copyright: TWINCORE)
Contact:
Prof. Dr. Thomas Pietschmann, thomas.pietschmann(at)twincore.de
Tel: +49 (0)511-220027-130
Julia Bitzegeio, julia.bitzegeio(at)twincore.de
Tel: +49 (0)511-220027-138

Dr. Bastian Dornbach | idw
Further information:
http://www.twincore.de
http://www.helmholtz-hzi.de

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>