Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new way to extract bone-making cells from fat tissue

06.10.2014

Within our fat lives a variety of cells with the potential to become bone, cartilage, or more fat if properly prompted. This makes adipose tissue, in theory, a readily available reservoir for regenerative therapies such as bone healing if doctors can get enough of those cells and compel them to produce bone.

In a new study in the journal Stem Cell Research & Therapy, scientists at Brown University demonstrate a new method for extracting a wide variety of potential bone-producing cells from human fat. They developed a fluorescent tag that could find and identify cells expressing a gene called ALPL. Expression of the gene is an indicator of bone-making potential.


Finding cells that have bone-making potential is more efficiently done by looking at the genes they express -- ALPL, in this case -- than at proteins on their surface. The bone matrix being produced by cells is stained red in samples of cells that are sorted for not expressing ALPL (left), sorted for expressing ALPL (right), and left as an unsorted control (center).

Credit: Darling lab/Brown University

If the tag finds the RNA produced when the gene is expressed, it latches on and glows. A machine that detects the fluorescing light then separates out the ALPL-expressing cells.

In the paper, the scientists report that their method produced more than twice the yield of potential bone-makers (9 percent) compared to their best application of another method: sorting cells based on surface proteins presumed to indicate that a cell is a stem cell (4 percent).

Brown University has applied for a patent on the method of gene expression tagging for producing a tissue.

Meanwhile, the ALPL-expressing cells produced on average more than twice as much bone matrix (and as much as nine times more in some trials) during three weeks of subsequent cultivation than a similar-sized population of unsorted adipose tissue cells and almost four times more bone matrix than cells that don't express ALPL. ALPL-expressing cells were also better at making cartilage or fat.

A couple of other research groups have also sorted stem cells based on gene expression, but they have not done so specifically with the goal of enriching cell populations for a specific tissue, the researchers said.

Lead author and Brown graduate student Hetal Marble said targeting gene expression rather than surface proteins for the purpose of gathering cells to make a new tissue is a "paradigm shift" in the following regard: Gene expression provides a way to target any cell based on whether it can produce another tissue, while targeting surface proteins limits researchers to harvesting cells that fit a presumed definition of being a stem cell. The new approach, she said, is more pragmatic for the purpose.

"Approaches like this allow us to isolate all the cells that are capable of doing what we want, whether they fit the archetype of what a stem cell is or not," Marble said. "The paradigm shift is thinking about isolating populations that are able to achieve an end point rather than isolating populations that fit a strictly defined archetype."

In their experiments, though, the team tolerated a four-day delay that they'd like to dispense with in the future. It takes that long for the maximum number of cells to express ALPL when cells are chemically primed to do so.

In future research, said senior author Eric Darling, the Manning Assistant Professor of Molecular Pharmacology, Physiology and Biotechnology and a member of the Center for Biomedical Engineering assistant professor of medical science, the team would like to target a gene expressed much earlier in the differentiation process to see if they can avoid a priming period.

If they can apply the method based on a gene that's expressible within a matter of hours, that could allow future surgeons working on bone healing to take out some of a patient's fat cells, sort out the best bone-producers (primed or not) and then implant those cells in the bone break within the same surgical session.

"If you can take the patient into the OR, isolate a bunch of their cells, sort them and put them back in that's ideally where we'd like to go with this," Darling said. "Theoretically we could do this with other genes that might upregulate very quickly or are innately expressed.

###

In addition to Marble and Darling, other authors are Bryan Sutermaster, Manisha Kanthilal, and Vera Fonseca.

The National Science Foundation (CBET1253189), The National Institutes of Health (R01 AR063642, P20 GM104937) and the U.S. Department of Education (P200A120064) provided support for the study.

David Orenstein | Eurek Alert!
Further information:
http://www.brown.edu

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
21.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>