Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new synthetic amino acid for an emerging class of drugs

01.09.2014

One of the greatest challenges in modern medicine is developing drugs that are highly effective against a target, but with minimal toxicity and side-effects to the patient.

Such properties are directly related to the 3D structure of the drug molecule. Ideally, the drug should have a shape that is perfectly complementary to a disease-causing target, so that it binds it with high specificity. Publishing in Nature Chemistry, EPFL scientists have developed a synthetic amino acid that can impact the 3D structure of bioactive peptides and enhance their potency.

Peptides and proteins as drugs

Many of the drugs we use today are essentially naturally-occurring peptides (small) and proteins (large), both of which are made up with the amino acids found in all living organisms. Despite the enormous variety of peptides and proteins, there are only twenty natural amino acids, each with a different structure and chemical properties. When strung together in a sequence, amino acids create peptides and proteins with different 3D structures and, consequently, different biological functions.

... more about:
»EPFL »Ecole »Polytechnique »amino »cysteine »drugs »proteins »receptor

Until recently, the vast majority of amino acid-based drugs were the kinds occurring in nature: hormones such as insulin, antibiotics such as vancomycin, immunosuppressive drugs such as cyclosporine etc. But the mounting burden of diseases means that newer and more effective medications must be developed; for example, bacterial resistance is growing globally, pushing our need for novel antibiotics. One way to address this need is the cutting-edge field of directed evolution, which mimics natural selection in the lab to evolve and develop new peptides and proteins.

A new amino acid for new peptides

The team of Christian Heinis at EPFL has developed a synthetic amino acid whose unique structure can considerably increase the effectiveness of therapeutic peptides and proteins. The synthetic amino acid has a very similar structure to a natural amino acid called cysteine. Cysteine is unique among the twenty natural amino acids because it contains a sulfur group. This allows it to form a bridge with another cysteine, and thereby influence the overall 3D structure – and function – of a peptide or protein.

The EPFL researchers initially designed five cysteine-like amino acids, all with one crucial change: each one could form two bridges instead of just one. The team achieved this by replacing cysteine's single sulfur group with a branch containing two sulfur groups. After synthesizing the five new amino acids, the team integrated them into the structure of two bioactive peptides, one that inhibits an enzyme implicated in cancer, and one blocking a receptor found in neurons.

Testing only a handful of cyclic peptides with the synthetic amino acid, Heinis' team was able to identify several peptides that showed enhanced activities. The best inhibitor of the neuron receptor was 8-fold improved and the best protease inhibitor had even a 40-fold higher activity.

"This was unexpected", says Christian Heinis. "Usually when you tamper with a natural molecule, you end up making it worse. In this case, we found the exact opposite, which is very exciting."

The emerging class of bicyclic peptides

The team focuses on therapeutics, where they have a strong background in developing "bicyclic" peptides – peptides that contain two rings in their structure. Bicyclic peptides have grown into a new class of therapeutic peptides that can be used on disease target that conventional small molecules or large antibodies cannot reach. Heinis' group has generated bicyclic peptides against a range of disease targets using directed evolution. "In our work with bicyclic peptides, we learned that wide structural diversity in peptide libraries is key for achieving good binding. With this new amino acid, it is possible to produce highly diverse peptide structures."

Heinis aims now to use the new amino acid in directed evolution experiments. Its structural features and its ability to efficiently make cyclic peptides makes the synthetic amino acid a promising candidate for developing new, effective polycyclic peptides for targeted therapy.

###

Reference

Chen S. Gopalakrishnan R, Schaer T, Marger F, Hovius R, Bertrand D, Pojer F, Heinis C. Di-thiol amino acids can structurally shape and enhance the ligand-binding properties of polypeptides. Nature Chemistry 31 August 2014. DOI: 10.1038/nchem.2043

Nik Papageorgiou | Eurek Alert!
Further information:
http://www.epfl.ch

Further reports about: EPFL Ecole Polytechnique amino cysteine drugs proteins receptor

More articles from Life Sciences:

nachricht A new potential biomarker for cancer imaging
05.02.2016 | Universiti Putra Malaysia (UPM)

nachricht NIH researchers identify striking genomic signature shared by 5 types of cancer
05.02.2016 | NIH/National Human Genome Research Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Automated driving: Steering without limits

OmniSteer project to increase automobiles’ urban maneuverability begins with a € 3.4 million budget

Automobiles increase the mobility of their users. However, their maneuverability is pushed to the limit by cramped inner city conditions. Those who need to...

Im Focus: Microscopy: Nine at one blow

Advance in biomedical imaging: The University of Würzburg's Biocenter has enhanced fluorescence microscopy to label and visualise up to nine different cell structures simultaneously.

Fluorescence microscopy allows researchers to visualise biomolecules in cells. They label the molecules using fluorescent probes, excite them with light and...

Im Focus: NASA's ICESat-2 equipped with unique 3-D manufactured part

NASA's follow-on to the successful ICESat mission will employ a never-before-flown technique for determining the topography of ice sheets and the thickness of sea ice, but that won't be the only first for this mission.

Slated for launch in 2018, NASA's Ice, Cloud and land Elevation Satellite-2 (ICESat-2) also will carry a 3-D printed part made of polyetherketoneketone (PEKK),...

Im Focus: Sinking islands: Does the rise of sea level endanger the Takuu Atoll in the Pacific?

In the last decades, sea level has been rising continuously – about 3.3 mm per year. For reef islands such as the Maldives or the Marshall Islands a sinister picture is being painted evoking the demise of the island states and their cultures. Are the effects of sea-level rise already noticeable on reef islands? Scientists from the ZMT have now answered this question for the Takuu Atoll, a group of Pacific islands, located northeast of Papua New Guinea.

In the last decades, sea level has been rising continuously – about 3.3 mm per year. For reef islands such as the Maldives or the Marshall Islands a sinister...

Im Focus: Energy-saving minicomputers for the ‘Internet of Things’

The ‘Internet of Things’ is growing rapidly. Mobile phones, washing machines and the milk bottle in the fridge: the idea is that minicomputers connected to these will be able to process information, receive and send data. This requires electrical power. Transistors that are capable of switching information with a single electron use far less power than field effect transistors that are commonly used in computers. However, these innovative electronic switches do not yet work at room temperature. Scientists working on the new EU research project ‘Ions4Set’ intend to change this. The program will be launched on February 1. It is coordinated by the Helmholtz-Zentrum Dresden-Rossendorf (HZDR).

“Billions of tiny computers will in future communicate with each other via the Internet or locally. Yet power consumption currently remains a great obstacle”,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AKL’16: Experience Laser Technology Live in Europe´s Largest Laser Application Center!

02.02.2016 | Event News

From intelligent knee braces to anti-theft backpacks

26.01.2016 | Event News

DATE 2016 Highlighting Automotive and Secure Systems

26.01.2016 | Event News

 
Latest News

A new potential biomarker for cancer imaging

05.02.2016 | Life Sciences

Graphene is strong, but is it tough?

05.02.2016 | Materials Sciences

Tiniest Particles Shrink Before Exploding When Hit With SLAC's X-ray Laser

05.02.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>