Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new synthetic amino acid for an emerging class of drugs

01.09.2014

One of the greatest challenges in modern medicine is developing drugs that are highly effective against a target, but with minimal toxicity and side-effects to the patient.

Such properties are directly related to the 3D structure of the drug molecule. Ideally, the drug should have a shape that is perfectly complementary to a disease-causing target, so that it binds it with high specificity. Publishing in Nature Chemistry, EPFL scientists have developed a synthetic amino acid that can impact the 3D structure of bioactive peptides and enhance their potency.

Peptides and proteins as drugs

Many of the drugs we use today are essentially naturally-occurring peptides (small) and proteins (large), both of which are made up with the amino acids found in all living organisms. Despite the enormous variety of peptides and proteins, there are only twenty natural amino acids, each with a different structure and chemical properties. When strung together in a sequence, amino acids create peptides and proteins with different 3D structures and, consequently, different biological functions.

... more about:
»EPFL »Ecole »Polytechnique »amino »cysteine »drugs »proteins »receptor

Until recently, the vast majority of amino acid-based drugs were the kinds occurring in nature: hormones such as insulin, antibiotics such as vancomycin, immunosuppressive drugs such as cyclosporine etc. But the mounting burden of diseases means that newer and more effective medications must be developed; for example, bacterial resistance is growing globally, pushing our need for novel antibiotics. One way to address this need is the cutting-edge field of directed evolution, which mimics natural selection in the lab to evolve and develop new peptides and proteins.

A new amino acid for new peptides

The team of Christian Heinis at EPFL has developed a synthetic amino acid whose unique structure can considerably increase the effectiveness of therapeutic peptides and proteins. The synthetic amino acid has a very similar structure to a natural amino acid called cysteine. Cysteine is unique among the twenty natural amino acids because it contains a sulfur group. This allows it to form a bridge with another cysteine, and thereby influence the overall 3D structure – and function – of a peptide or protein.

The EPFL researchers initially designed five cysteine-like amino acids, all with one crucial change: each one could form two bridges instead of just one. The team achieved this by replacing cysteine's single sulfur group with a branch containing two sulfur groups. After synthesizing the five new amino acids, the team integrated them into the structure of two bioactive peptides, one that inhibits an enzyme implicated in cancer, and one blocking a receptor found in neurons.

Testing only a handful of cyclic peptides with the synthetic amino acid, Heinis' team was able to identify several peptides that showed enhanced activities. The best inhibitor of the neuron receptor was 8-fold improved and the best protease inhibitor had even a 40-fold higher activity.

"This was unexpected", says Christian Heinis. "Usually when you tamper with a natural molecule, you end up making it worse. In this case, we found the exact opposite, which is very exciting."

The emerging class of bicyclic peptides

The team focuses on therapeutics, where they have a strong background in developing "bicyclic" peptides – peptides that contain two rings in their structure. Bicyclic peptides have grown into a new class of therapeutic peptides that can be used on disease target that conventional small molecules or large antibodies cannot reach. Heinis' group has generated bicyclic peptides against a range of disease targets using directed evolution. "In our work with bicyclic peptides, we learned that wide structural diversity in peptide libraries is key for achieving good binding. With this new amino acid, it is possible to produce highly diverse peptide structures."

Heinis aims now to use the new amino acid in directed evolution experiments. Its structural features and its ability to efficiently make cyclic peptides makes the synthetic amino acid a promising candidate for developing new, effective polycyclic peptides for targeted therapy.

###

Reference

Chen S. Gopalakrishnan R, Schaer T, Marger F, Hovius R, Bertrand D, Pojer F, Heinis C. Di-thiol amino acids can structurally shape and enhance the ligand-binding properties of polypeptides. Nature Chemistry 31 August 2014. DOI: 10.1038/nchem.2043

Nik Papageorgiou | Eurek Alert!
Further information:
http://www.epfl.ch

Further reports about: EPFL Ecole Polytechnique amino cysteine drugs proteins receptor

More articles from Life Sciences:

nachricht An evolutionary heads-up – The brain size advantage
22.05.2015 | Veterinärmedizinische Universität Wien

nachricht Endocrine disrupting chemicals in baby teethers
21.05.2015 | Goethe-Universität Frankfurt am Main

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Basel Physicists Develop Efficient Method of Signal Transmission from Nanocomponents

Physicists have developed an innovative method that could enable the efficient use of nanocomponents in electronic circuits. To achieve this, they have developed a layout in which a nanocomponent is connected to two electrical conductors, which uncouple the electrical signal in a highly efficient manner. The scientists at the Department of Physics and the Swiss Nanoscience Institute at the University of Basel have published their results in the scientific journal “Nature Communications” together with their colleagues from ETH Zurich.

Electronic components are becoming smaller and smaller. Components measuring just a few nanometers – the size of around ten atoms – are already being produced...

Im Focus: IoT-based Advanced Automobile Parking Navigation System

Development and implementation of an advanced automobile parking navigation platform for parking services

To fulfill the requirements of the industry, PolyU researchers developed the Advanced Automobile Parking Navigation Platform, which includes smart devices,...

Im Focus: First electrical car ferry in the world in operation in Norway now

  • Siemens delivers electric propulsion system and charging stations with lithium-ion batteries charged from hydro power
  • Ferry only uses 150 kilowatt hours (kWh) per route and reduces cost of fuel by 60 percent
  • Milestone on the road to operating emission-free ferries

The world's first electrical car and passenger ferry powered by batteries has entered service in Norway. The ferry only uses 150 kWh per route, which...

Im Focus: Into the ice – RV Polarstern opens the arctic season by setting course for Spitsbergen

On Tuesday, 19 May 2015 the research icebreaker Polarstern will leave its home port in Bremerhaven, setting a course for the Arctic. Led by Dr Ilka Peeken from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) a team of 53 researchers from 11 countries will investigate the effects of climate change in the Arctic, from the surface ice floes down to the seafloor.

RV Polarstern will enter the sea-ice zone north of Spitsbergen. Covering two shallow regions on their way to deeper waters, the scientists on board will focus...

Im Focus: Gel filled with nanosponges cleans up MRSA infections

Nanoengineers at the University of California, San Diego developed a gel filled with toxin-absorbing nanosponges that could lead to an effective treatment for skin and wound infections caused by MRSA (methicillin-resistant Staphylococcus aureus), an antibiotic-resistant bacteria. This "nanosponge-hydrogel" minimized the growth of skin lesions on mice infected with MRSA - without the use of antibiotics. The researchers recently published their findings online in Advanced Materials.

To make the nanosponge-hydrogel, the team mixed nanosponges, which are nanoparticles that absorb dangerous toxins produced by MRSA, E. coli and other...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International symposium: trends in spatial analysis and modelling for a more sustainable land use

20.05.2015 | Event News

15th conference of the International Association of Colloid and Interface Scientists

18.05.2015 | Event News

EHFG 2015: Securing health in Europe. Balancing priorities, sharing responsibilities

12.05.2015 | Event News

 
Latest News

Mesoporous Particles for the Development of Drug Delivery System Safe to Human Bodies

22.05.2015 | Materials Sciences

Computing at the Speed of Light

22.05.2015 | Information Technology

Development of Gold Nanoparticles That Control Osteogenic Differentiation of Stem Cells

22.05.2015 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>