Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A New Discovery in the Fight against Cancer: Tumor Cells Switch to a Different Mode

29.04.2016

When medication is used to shut off the oxygen supply to tumor cells, the cells adapt their metabolism in the medium term – by switching over to producing energy without oxygen. This observation by biomedical scientists at the University of Basel and University Hospital Basel could be used for treatments that can inhibit tumor growth in the long term, as the researchers report in the latest issue of the journal Cell Reports.

One in three people still develop cancer at some point in their lives, and even now half of these cases result in death. There is therefore a demand for new approaches in the fight against cancer. Today, it is common knowledge that the disease develops in a series of stages. One of these stages, tumor angiogenesis, involves the formation of new blood vessels to supply oxygen and nutrients to the growing tumor.


Following anti-angiogenic therapy, tumors develop regions containing no blood vessels (green) and therefore no oxygen (red). The tumor cells are made visible by dyeing the nuclei blue.

University of Basel, Department of Biomedicine

Understanding the basics of how cancer forms has led to the development of increasingly targeted techniques for combating tumors: today, medications can simultaneously inhibit several signaling pathways that regulate tumor angiogenesis.

Understanding of the molecular basis for this process has paved the way for the routine application of specific therapies in the clinical setting: for example, so-called anti-angiogenic therapy can be used to prevent the formation of the blood vessels that supply tumors.

But this usually achieves only temporary success. Tumor growth is initially slowed or even stopped for a time; however, as the treatment goes on, the tumors begins to develop resistance to these therapies – and they start to grow again.

“An unexpected observation”

Now, the research group lead by Prof. Gerhard Christofori of the Department of Biomedicine at the University of Basel and University Hospital Basel has shown that, although the latest medications are effective at preventing blood vessel formation, the tumors can continue growing even without a supply of new blood vessels – an unexpected observation, as the researchers report in the publication.

Analysis of this finding from a biochemical and molecular genetic perspective revealed that the tumor cells convert to a different type of metabolism: they no longer produce energy using oxygen delivered via the blood vessels – but instead switch over to glycolysis, a form of anaerobic energy production. The lactic acid formed as a result is delivered to cells that are still receiving sufficient oxygen and that can use the lactic acid, together with the oxygen, to produce energy.

New therapies possible

The research group also showed that this specific mode of metabolism – and therefore the tumor’s growth – can be interrupted, namely by inhibiting anaerobic energy production or transport of the lactic acid. “Our findings open up new approaches for the optimization of anti-angiogenic therapies and for inhibiting tumor growth effectively in the long term,” says co-author Christofori about the group’s results.

Original paper
Laura Pisarsky, Ruben Bill, Ernesta Fagiani, Sarah Dimeloe, Ryan William Goosen, Jörg Hagmann, Christoph Hess, and Gerhard Christofori
Targeting Metabolic Symbiosis to Overcome Resistance to Anti-angiogenic Therapy
Cell Reports (2016), doi:

Further information
Prof. Dr. Gerhard Christofori, Department of Biomedicine at the University of Basel and University Hospital Basel, tel. +41 61 267 35 62, email: gerhard.christofori@unibas.ch

Weitere Informationen:

https://www.unibas.ch/en/News-Events/News/Uni-Research/A-New-Discovery-in-the-Fi...

Reto Caluori | Universität Basel

Further reports about: CANCER Tumor anaerobic blood vessels energy production new blood vessels

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>