Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new direction in the world of research

05.05.2014

NanoBioMater project house opens

Biocompatible, functional materials for medical engineering, diagnostics and environmental analysis are the focus for the new NanoBioMater project house which celebrated its opening at Stuttgart University on April 25, 2014. Researchers from the natural sciences, material sciences and engineering sciences will in future collaborate to develop novel bio-hybrid materials in the house.

The Carl Zeiss Foundation in Stuttgart is providing three quarters of the funding, 750,000 euros, and the University of Stuttgart is supporting the interdisciplinary venture to the tune of 250,000 euros. The project house is building upon the project partners' joint preliminary work which was supported by the Ministry for Science, Research and Art in Baden Württemberg with a total of 600,000 euros from 2009 to 2013.

"We are happy to be able to provide targeted funding to promote innovative research structures at the University of Stuttgart in the shape of this project", states Prof. Wolfram Ressel, Rector of the University, in welcoming the official launch of NanoBioMater, and he thanks the Carl Zeiss Foundation for their commitment.

Prof. Hans-Joachim Werner, Vice-Rector for Structure and Research at the University of Stuttgart, emphasised in his address that the project house will lead to tighter integration of natural and applied sciences at the University of Stuttgart, and he declared: "The overriding scientific goal of the research partners is to integrate existing research units into a new organisational structure which will enable interdisciplinary advances to be made in the field of soft functional materials which are of particular interest for later clinical applications."

"The intention is for our project to lead to a research alliance but for the moment we are just happy that our NanoBio project house is on a financially stable footing for the next four years", confirmed Prof. Sabine Laschat, Director of the Institute for Organic Chemistry (IOC) at the University of Stuttgart, who has been responsible for driving the project together with Prof. Thomas Hirth, Director of the Institute for Interfacial Engineering and Plasma Technology (IGVP).

The scientific focus will be on synthetic biogenic hybrid hydrogels. These are very soft, aqueous materials made from different combinations of chemical and biological components which can be produced in almost any structure and shape. They offer an ideal starting point for the development of new, complex biomaterials. "These hydrogels are similar to the tissue in the human body and can serve as the basis for developing replacement organs", explains Prof. Günter Tovar from IGVP, who will coordinate the project house in a core team together with Prof. Christina Wege from the Institute for Biomaterials and biomolecular Systems (IBBS).

The hybrid hydrogels offer new opportunities not just for biomedicine but they also open up new possibilities in the field of miniaturised diagnostics in environmental, food and medical analytics. "Nano building blocks from the world of plant viruses serve as structural components which give the hydrogel stability and sensory or bioactive properties", says biologist Wege describing the effectiveness of the project house approach.

Not only is the object of research pursued by the NanoBioMater project house novel, the type of collaboration involved is equally so. Four interdisciplinary post-doctoral researchers acting as team managers in joint laboratories will be responsible for the input from various technical perspectives. In addition, the four researchers together with the professors involved in the project, represent an intensive interlinking of the University institutes as they are all attached to two further institutes.

As well as the institutes directly involved, IBBS, IGVP, IOC and the Institutes for Material Science (IMW), for Physical Chemistry (IPC), for Polymer Chemistry (IPOC) and for Technical Biochemistry (ITB), the project house will be considerably enriched by a tight network of further cooperating institutes from surrounding fields, from physics to the Fraunhofer Institute for Interfacial Engineering and Biotechnology, IGB, and the Max Planck Institute for intelligent Systems as well as numerous external collaboration partners in the Stuttgart region and the whole country. As well as scientific facilities, businesses also play an important role and are well networked with the NanoBioMater project house.

The guest speech at the opening ceremony was delivered by Prof. Tanja Weil, Director of the Institute for Organic Chemistry, Department of Macromolecular Chemistry and Biomaterials at the University of Ulm, on the subject of "Switchable biopolymers from biogenic components for medical applications".

Further information:
Prof. Günter Tovar, University of Stuttgart, Institute for Interfacial Engineering and Plasma Technology (IGVP), Tel. 0711/970-4109, email: Guenter.Tovar@igvp.uni-stuttgart.de
Prof. Christina Wege, University of Stuttgart, Institute for Biomaterials and biomolecular Systems (IBBS), Tel. 0711/685-65073, email: Christina.Wege@bio.uni-stuttgart.de
Dr. Hans-Herwig Geyer, University of Stuttgart, Director of University Communications and Press Officer, Tel. 0711/685-82555, email: hans-herwig.geyer@hkom.uni-stuttgart.de

Andrea Mayer-Grenu | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-stuttgart.de

Further reports about: IOC Interfacial NanoBioMater Organic Plasma biogenic hydrogels materials

More articles from Life Sciences:

nachricht New Model of T Cell Activation
27.05.2016 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Fungi – a promising source of chemical diversity
27.05.2016 | Leibniz-Institut für Naturstoff-Forschung und Infektionsbiologie - Hans-Knöll-Institut (HKI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Worldwide Success of Tyrolean Wastewater Treatment Technology

A biological and energy-efficient process, developed and patented by the University of Innsbruck, converts nitrogen compounds in wastewater treatment facilities into harmless atmospheric nitrogen gas. This innovative technology is now being refined and marketed jointly with the United States’ DC Water and Sewer Authority (DC Water). The largest DEMON®-system in a wastewater treatment plant is currently being built in Washington, DC.

The DEMON®-system was developed and patented by the University of Innsbruck 11 years ago. Today this successful technology has been implemented in about 70...

Im Focus: Computational high-throughput screening finds hard magnets containing less rare earth elements

Permanent magnets are very important for technologies of the future like electromobility and renewable energy, and rare earth elements (REE) are necessary for their manufacture. The Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Germany, has now succeeded in identifying promising approaches and materials for new permanent magnets through use of an in-house simulation process based on high-throughput screening (HTS). The team was able to improve magnetic properties this way and at the same time replaced REE with elements that are less expensive and readily available. The results were published in the online technical journal “Scientific Reports”.

The starting point for IWM researchers Wolfgang Körner, Georg Krugel, and Christian Elsässer was a neodymium-iron-nitrogen compound based on a type of...

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

11 million Euros for research into magnetic field sensors for medical diagnostics

27.05.2016 | Awards Funding

Fungi – a promising source of chemical diversity

27.05.2016 | Life Sciences

New Model of T Cell Activation

27.05.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>