Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new direction in the world of research

05.05.2014

NanoBioMater project house opens

Biocompatible, functional materials for medical engineering, diagnostics and environmental analysis are the focus for the new NanoBioMater project house which celebrated its opening at Stuttgart University on April 25, 2014. Researchers from the natural sciences, material sciences and engineering sciences will in future collaborate to develop novel bio-hybrid materials in the house.

The Carl Zeiss Foundation in Stuttgart is providing three quarters of the funding, 750,000 euros, and the University of Stuttgart is supporting the interdisciplinary venture to the tune of 250,000 euros. The project house is building upon the project partners' joint preliminary work which was supported by the Ministry for Science, Research and Art in Baden Württemberg with a total of 600,000 euros from 2009 to 2013.

"We are happy to be able to provide targeted funding to promote innovative research structures at the University of Stuttgart in the shape of this project", states Prof. Wolfram Ressel, Rector of the University, in welcoming the official launch of NanoBioMater, and he thanks the Carl Zeiss Foundation for their commitment.

Prof. Hans-Joachim Werner, Vice-Rector for Structure and Research at the University of Stuttgart, emphasised in his address that the project house will lead to tighter integration of natural and applied sciences at the University of Stuttgart, and he declared: "The overriding scientific goal of the research partners is to integrate existing research units into a new organisational structure which will enable interdisciplinary advances to be made in the field of soft functional materials which are of particular interest for later clinical applications."

"The intention is for our project to lead to a research alliance but for the moment we are just happy that our NanoBio project house is on a financially stable footing for the next four years", confirmed Prof. Sabine Laschat, Director of the Institute for Organic Chemistry (IOC) at the University of Stuttgart, who has been responsible for driving the project together with Prof. Thomas Hirth, Director of the Institute for Interfacial Engineering and Plasma Technology (IGVP).

The scientific focus will be on synthetic biogenic hybrid hydrogels. These are very soft, aqueous materials made from different combinations of chemical and biological components which can be produced in almost any structure and shape. They offer an ideal starting point for the development of new, complex biomaterials. "These hydrogels are similar to the tissue in the human body and can serve as the basis for developing replacement organs", explains Prof. Günter Tovar from IGVP, who will coordinate the project house in a core team together with Prof. Christina Wege from the Institute for Biomaterials and biomolecular Systems (IBBS).

The hybrid hydrogels offer new opportunities not just for biomedicine but they also open up new possibilities in the field of miniaturised diagnostics in environmental, food and medical analytics. "Nano building blocks from the world of plant viruses serve as structural components which give the hydrogel stability and sensory or bioactive properties", says biologist Wege describing the effectiveness of the project house approach.

Not only is the object of research pursued by the NanoBioMater project house novel, the type of collaboration involved is equally so. Four interdisciplinary post-doctoral researchers acting as team managers in joint laboratories will be responsible for the input from various technical perspectives. In addition, the four researchers together with the professors involved in the project, represent an intensive interlinking of the University institutes as they are all attached to two further institutes.

As well as the institutes directly involved, IBBS, IGVP, IOC and the Institutes for Material Science (IMW), for Physical Chemistry (IPC), for Polymer Chemistry (IPOC) and for Technical Biochemistry (ITB), the project house will be considerably enriched by a tight network of further cooperating institutes from surrounding fields, from physics to the Fraunhofer Institute for Interfacial Engineering and Biotechnology, IGB, and the Max Planck Institute for intelligent Systems as well as numerous external collaboration partners in the Stuttgart region and the whole country. As well as scientific facilities, businesses also play an important role and are well networked with the NanoBioMater project house.

The guest speech at the opening ceremony was delivered by Prof. Tanja Weil, Director of the Institute for Organic Chemistry, Department of Macromolecular Chemistry and Biomaterials at the University of Ulm, on the subject of "Switchable biopolymers from biogenic components for medical applications".

Further information:
Prof. Günter Tovar, University of Stuttgart, Institute for Interfacial Engineering and Plasma Technology (IGVP), Tel. 0711/970-4109, email: Guenter.Tovar@igvp.uni-stuttgart.de
Prof. Christina Wege, University of Stuttgart, Institute for Biomaterials and biomolecular Systems (IBBS), Tel. 0711/685-65073, email: Christina.Wege@bio.uni-stuttgart.de
Dr. Hans-Herwig Geyer, University of Stuttgart, Director of University Communications and Press Officer, Tel. 0711/685-82555, email: hans-herwig.geyer@hkom.uni-stuttgart.de

Andrea Mayer-Grenu | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-stuttgart.de

Further reports about: IOC Interfacial NanoBioMater Organic Plasma biogenic hydrogels materials

More articles from Life Sciences:

nachricht Even plants can be stressed
03.09.2015 | Max-Planck-Institut für Molekulare Pflanzenphysiologie

nachricht Research team from Münster develops innovative catalytic chemistry process
03.09.2015 | Westfälische Wilhelms-Universität Münster

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fraunhofer ISE Develops Highly Compact Inverter for Uninterruptible Power Supplies

Silicon Carbide Components Enable Efficiency of 98.7 percent

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE have developed a highly compact and efficient inverter for use in uninterruptible power...

Im Focus: How wind sculpted Earth's largest dust deposit

China's Loess Plateau was formed by wind alternately depositing dust or removing dust over the last 2.6 million years, according to a new report from University of Arizona geoscientists. The study is the first to explain how the steep-fronted plateau formed.

China's Loess Plateau was formed by wind alternately depositing dust or removing dust over the last 2.6 million years, according to a new report from...

Im Focus: An engineered surface unsticks sticky water droplets

The leaves of the lotus flower, and other natural surfaces that repel water and dirt, have been the model for many types of engineered liquid-repelling surfaces. As slippery as these surfaces are, however, tiny water droplets still stick to them. Now, Penn State researchers have developed nano/micro-textured, highly slippery surfaces able to outperform these naturally inspired coatings, particularly when the water is a vapor or tiny droplets.

Enhancing the mobility of liquid droplets on rough surfaces could improve condensation heat transfer for power-plant heat exchangers, create more efficient...

Im Focus: Increasingly severe disturbances weaken world's temperate forests

Longer, more severe, and hotter droughts and a myriad of other threats, including diseases and more extensive and severe wildfires, are threatening to transform some of the world's temperate forests, a new study published in Science has found. Without informed management, some forests could convert to shrublands or grasslands within the coming decades.

"While we have been trying to manage for resilience of 20th century conditions, we realize now that we must prepare for transformations and attempt to ease...

Im Focus: OU astrophysicist and collaborators find supermassive black holes in quasar nearest Earth

A University of Oklahoma astrophysicist and his Chinese collaborator have found two supermassive black holes in Markarian 231, the nearest quasar to Earth, using observations from NASA's Hubble Space Telescope.

The discovery of two supermassive black holes--one larger one and a second, smaller one--are evidence of a binary black hole and suggests that supermassive...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Together - Work - Experience

03.09.2015 | Event News

Networking conference in Heidelberg for outstanding mathematicians and computer scientists

20.08.2015 | Event News

Scientists meet in Münster for the world’s largest Chitin und Chitosan Conference

20.08.2015 | Event News

 
Latest News

Lighter with Laser Welding

03.09.2015 | Process Engineering

For 2-D boron, it's all about that base

03.09.2015 | Materials Sciences

Phagraphene, a 'relative' of graphene, discovered

03.09.2015 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>