Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A nanoscale rope, and another step toward complex nanomaterials that assemble themselves

20.01.2011
Scientists at the U.S. Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab) have coaxed polymers to braid themselves into wispy nanoscale ropes that approach the structural complexity of biological materials.

Their work is the latest development in the push to develop self-assembling nanoscale materials that mimic the intricacy and functionality of nature's handiwork, but which are rugged enough to withstand harsh conditions such as heat and dryness.

Although still early in the development stage, their research could lead to new applications that combine the best of both worlds. Perhaps they'll be used as scaffolds to guide the construction of nanoscale wires and other structures. Or perhaps they'll be used to develop drug-delivery vehicles that target disease at the molecular scale, or to develop molecular sensors and sieve-like devices that separate molecules from one another.

Specifically, the scientists created the conditions for synthetic polymers called polypeptoids to assemble themselves into ever more complicated structures: first into sheets, then into stacks of sheets, which in turn roll up into double helices that resemble a rope measuring only 600 nanometers in diameter (a nanometer is a billionth of a meter).

"This hierarchichal self assembly is the hallmark of biological materials such as collagen, but designing synthetic structures that do this has been a major challenge," says Ron Zuckermann, who is the Facility Director of the Biological Nanostructures Facility in Berkeley Lab's Molecular Foundry.

In addition, unlike normal polymers, the scientists can control the atom-by-atom makeup of the ropy structures. They can also engineer helices of specific lengths and sequences. This "tunability" opens the door for the development of synthetic structures that mimic biological materials' ability to carry out incredible feats of precision, such as homing in on specific molecules.

"Nature uses exact length and sequence to develop highly functional structures. An antibody can recognize one form of a protein over another, and we're trying to mimic this," adds Zuckermann.

Zuckermann and colleagues conducted the research at The Molecular Foundry, which is one of the five DOE Nanoscale Science Research Centers premier national user facilities for interdisciplinary research at the nanoscale. Joining him were fellow Berkeley Lab scientists Hannah Murnen, Adrianne Rosales, Jonathan Jaworski, and Rachel Segalman. Their research was published in a recent issue of the Journal of the American Chemical Society.

The scientists worked with chains of bioinspired polymers called a peptoids. Peptoids are structures that mimic peptides, which nature uses to form proteins, the workhorses of biology. Instead of using peptides to build proteins, however, the scientists are striving to use peptoids to build synthetic structures that behave like proteins.

The team started with a block copolymer, which is a polymer composed of two or more different monomers.

"Simple block copolymers self assemble into nanoscale structures, but we wanted to see how the detailed sequence and functionality of bioinspired units could be used to make more complicated structures," says Rachel Segalman, a faculty scientist at Berkeley Lab and professor of Chemical and Biomolecular Engineering at University of California, Berkeley.

With this in mind, the peptoid pieces were robotically synthesized, processed, and then added to a solution that fosters self assembly.

The result was a variety of self-made shapes and structures, with the braided helices being the most intriguing. The hierarchical structure of the helix, and its ability to be manipulated atom-by-atom, means that it could be used as a template for mineralizing complex structures on a nanometer scale.

"The idea is to assemble structurally complex structures at the nanometer scale with minimal input," says Hannah Murnen. She adds that the scientists next hope is to capitalize on the fact that they have minute control over the structure's sequence, and explore how very small chemical changes alter the helical structure.

Says Zuckermann, "These braided helices are one of the first forays into making atomically defined block copolymers. The idea is to take something we normally think of as plastic, and enable it to adopt structures that are more complex and capable of higher function, such as molecular recognition, which is what proteins do really well."

X-ray diffraction experiments used to characterize the structures were conducted at beamlines 8.3.1 and 7.3.3 of Berkeley Lab's Advanced Light Source, a national user facility that generates intense x-rays to probe the fundamental properties of substances. This work was supported in part by the Office of Naval Research.

Lawrence Berkeley National Laboratory is a U.S. Department of Energy (DOE) national laboratory managed by the University of California for the DOE Office of Science. Berkeley Lab provides solutions to the world's most urgent scientific challenges including sustainable energy, climate change, human health, and a better understanding of matter and force in the universe. It is a world leader in improving our lives through team science, advanced computing, and innovative technology.

Dan Krotz | EurekAlert!
Further information:
http://www.lbl.gov

More articles from Life Sciences:

nachricht Navigational view of the brain thanks to powerful X-rays
18.10.2017 | Georgia Institute of Technology

nachricht Separating methane and CO2 will become more efficient
18.10.2017 | KU Leuven

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>