Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Nano-Solution to Global Water Problem: Nanomembranes Could Filter Bacteria

23.02.2011
New nanomaterials research from the University at Buffalo could lead to new solutions for an age-old public health problem: how to separate bacteria from drinking water.

To the naked eye, both water molecules and germs are invisible -- objects so tiny they are measured by the nanometer, a unit of length about 100,000 times thinner than the width of a human hair.

But at the microscopic level, the two actually differ greatly in size. A single water molecule is less than a nanometer wide, while some of the most diminutive bacteria are a couple hundred.

Working with a special kind of polymer called a block copolymer, a UB research team has synthesized a new kind of nanomembrane containing pores about 55 nanometers in diameter -- large enough for water to slip through easily, but too small for bacteria.

The pore size is the largest anyone has achieved to date using block copolymers, which possess special properties that ensure pores will be evenly spaced, said Javid Rzayev, the UB chemist who led the study. The findings were published online on Jan. 31 in Nano Letters and will appear in the journal's print edition later this year, with UB chemistry graduate student Justin Bolton as lead author.

"These materials present new opportunities for use as filtration membranes," said Rzayev, an assistant professor of chemistry. "Commercial membranes have limitations as far as pore density or uniformity of the pore size. The membranes prepared from block copolymers have a very dense distribution of pores, and the pores are uniform."

"There's a lot of research in this area, but what our research team was able to accomplish is to expand the range of available pores to 50 nanometers in diameter, which was previously unattainable by block-copolymer-based methods," Rzayev continued. "Making pores bigger increases the flow of water, which will translate into cost and time savings. At the same time, 50 to 100 nm diameter pores are small enough not to allow any bacteria through. So, that is a sweet spot for this kind of application."

The new nanomembrane owes its special qualities to the polymers that scientists used to create it. Block copolymers are made up of two polymers that repel one another but are "stitched" together at one end to form the single copolymer.

When many block copolymers are mixed together, their mutual repulsion leads them to assemble in a regular, alternating pattern. The result of that process, called self-assembly, is a solid nanomembrane comprising two different kinds of polymers.

To create evenly spaced pores in the material, Rzayev and colleagues simply removed one of the polymers. The pores' relatively large size was due to the unique architecture of the original block copolymers, which were made from bottle-brush molecules that resemble round hair brushes, with molecular "bristles" protruding all the way around a molecular backbone.

The research on nanomembranes is part of a larger suite of studies Rzayev is conducting on bottle-brush molecules using a National Science Foundation CAREER award, the foundation's most prestigious award for junior investigators. His other work includes the fabrication of organic nanotubes for drug delivery, and the assembly of layered, bottle-brush polymers that reflect visible light like the wings of a butterfly do.

The University at Buffalo is a premier research-intensive public university, a flagship institution in the State University of New York system and its largest and most comprehensive campus. UB's more than 28,000 students pursue their academic interests through more than 300 undergraduate, graduate and professional degree programs. Founded in 1846, the University at Buffalo is a member of the Association of American Universities.

Charlotte Hsu | EurekAlert!
Further information:
http://www.buffalo.edu/news/12288

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>