Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


A multi-function protein is key to stopping genomic parasites from 'jumping'


Keeping 'jumping genes' in check could help control some age-related diseases

Most organisms, including humans, have parasitic DNA fragments called "jumping genes" that insert themselves into DNA molecules, disrupting genetic instructions in the process. And that phenomenon can result in age-related diseases such as cancer.

But researchers at the University of Rochester now report that the "jumping genes" in mice become active as the mice age when a multi-function protein stops keeping them in check in order to take on another role.

In a study published today in Nature Communications, Professor of Biology Vera Gorbunova and Assistant Professor of Biology Andrei Seluanov explain that a protein called Sirt6 is needed to keep the jumping genes—technically known as retrotransposons—inactive. That's an entirely different function from the ones scientists had long associated with Sirt6, such as the repairing of broken DNA molecules and regulating metabolism.

"About half of the human genome is made up of retrotransposons," said Gorbunova. "By better understanding why these genomic parasites become active, we hope to better understand and perhaps delay the aging process in humans."

For the most part, retrotransposons remain silent and inactive in organisms' genomes. But once they do become active, these DNA fragments can duplicate themselves and "jump" to new areas of the genome, disrupting the function of another gene by landing in an important part of the gene and changing its DNA sequence information.

But what happens to the Sirt6 proteins that kept the jumping genes inactive in younger cells? The answer lies in the role that Sirt6 plays in repairing DNA damage. Cells accumulate a lot of DNA damage over time that needs to be constantly repaired. As cells get older, Sirt6 becomes busier in taking care of the DNA damage. Gorbunova and Seluanov hypothesized that Sirt6 becomes so preoccupied in repairing DNA damage in older cells that it is no longer available to keep the jumping genes inactive.

To test the theory, the team artificially caused DNA damage in young cells using gamma radiation or the chemical hydrogen peroxide. Once the damage took place, Sirt6 was immediately recruited to the damaged sites of the DNA to do its repair work.

Gorbunova and Seluanov found that the stressed cells—the ones with increased DNA damage—had a higher rate of "jumping gene" activity, when compared to the other cells. Then, when the amount of Sirt6 was artificially increased in the stressed cells, the retrotransposons did not become as readily active, keeping the genome safe.

"This suggests that supplying more Sirt6 protein might protect older cells from aging," said Gorbunova. "The idea would be to increase the Sirt6 pool so that enough proteins are available for both DNA repair and for keeping the retrotransposons inactive."

Peter Iglinski | Eurek Alert!
Further information:

More articles from Life Sciences:

nachricht Gene therapy shows promise for treating Niemann-Pick disease type C1
27.10.2016 | NIH/National Human Genome Research Institute

nachricht 'Neighbor maps' reveal the genome's 3-D shape
27.10.2016 | International School of Advanced Studies (SISSA)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>