Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A motley collection of boneworms

12.11.2009
It sounds like a classic horror story—eyeless, mouthless worms lurk in the dark, settling onto dead animals and sending out green "roots" to devour their bones. In fact, such worms do exist in the deep sea.

They were first discovered in 2002 by researchers at the Monterey Bay Aquarium Research Institute (MBARI), who were using a robot submarine to explore Monterey Canyon. But that wasn't the end of the story.

After "planting" several dead whales on the seafloor, a team of biologists recently announced that as many as 15 different species of boneworms may live in Monterey Bay alone.

After years of study, the researchers have begun to piece together the bizarre story of the boneworms, all of which are in the genus Osedax. The worms start out as microscopic larvae, drifting through the darkness of the deep sea. At some point they encounter a large dead animal on the seafloor. It may be a whale, an elephant seal, or even the carcass of a cow that washed out to sea during a storm. Following chemical cues, the tiny larvae settle down onto the bones of the dead animal.

Once settled, the boneworms grow quickly, like weeds after a rain. One end of each worm develops feathery palps, which extract oxygen from seawater. The other end of the worm develops root-like appendages that grow down into the bone. Bacteria within these roots are believed to digest proteins and perhaps lipids within the bones, providing nutrition for the worms.

Soon the worms become sexually mature. Strangely enough, they all become females. Additional microscopic larvae continue to settle in the area. Some of these larvae land on the palps of the female worms. These develop into male worms. But they never grow large enough to be seen by the naked eye. Somehow these microscopic male worms find their way into the tube that surrounds the female's body. Dozens of them share this space, not eating at all, but releasing sperm that fertilize the female's eggs. Eventually the female worm sends thousands of fertilized eggs out into the surrounding water, and the cycle begins again.

Dr. Robert Vrijenhoek, an evolutionary biologist at MBARI, has been fascinated with these worms ever since he and his colleagues first discovered their unusual lifestyles and bizarre reproductive habits. Vrijenhoek has been trying to find out how widespread and genetically diverse these worms are. He would also like to know how they manage to find and colonize the bones of dead whales in the vast, pitch-black expanse of the deep seafloor.

Between 2004 and 2008, Vrijenhoek's research team towed five dead whales off of Monterey Bay beaches and sank them at different depths within Monterey Canyon. Every few months, coauthor Shannon Johnson and others on the team would send one of MBARI's remotely operated vehicles (ROVs) down to study the worms and other animals that had colonized the whale carcasses.

To their surprise, the different whale carcasses yielded different types of boneworms. One whale carcass hosted three or four different types of worms. After examining all of the worms, coauthor Greg Rouse concluded that most of them were entirely new to science. The researchers also discovered that the worms would colonize cow-bones placed on the seafloor, which showed that the worms were not limited to feeding on dead whales.

In their recent paper in the journal BMC Biology, Vrijenhoek and his coauthors describe the results of extensive DNA analyses on all the different types of Osedax worms that have been discovered so far (including two species found off Sweden and Japan). This work suggests that these worms could belong to as many as 17 different species, most of which have yet to be named. None of the worms appear to interbreed, despite the fact that some of them grow side by side.

Based on their appearance and similarities in their DNA, the researchers divided the boneworms into several groups. Some of the worms have feathery palps, which may be red, pink, striped, or even greenish in color. Others have bare palps. One type of boneworm has no palps at all. Its body forms a single, long, tapering tube, which curls at the end like a pig's tail. This worm has evolved to live in the seafloor sediment near a dead whale. It sends long, fibrous "roots" into the mud, presumably in search of fragments of bone on which to feed.

Knowing how fast the DNA of these worms changes (mutates) over time, the researchers can calculate how long it has been since worms in the genus Osedax first evolved as a distinct group. Using one possible estimate of mutation rates, the researchers hypothesized that this group could have evolved about 45 million years ago—about the time the first large open-ocean whales show up in the fossil record. Alternatively, the worms may have evolved more slowly, which would suggest that the genus is much older, and first evolved about 130 million years ago. If this second estimate is correct, the worms could have feasted on the bones of immense sea-going reptiles during the age of the dinosaurs.

Eventually the researchers will give all these new worms their own species names. First, however, they must collect enough samples of each possible species for additional laboratory analysis and distribution to type-specimen collections. Like a classic horror story, the macabre saga of the boneworms will continue to thrill marine biologists for years to come.

This research was sponsored by the David and Lucile Packard Foundation.

For more information or images relating to this news release, please contact:
Kim Fulton-Bennett: (831) 775-1835, kfb@mbari.org

Kim Fulton-Bennett | EurekAlert!
Further information:
http://www.mbari.org

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>