Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A molecular identity crisis - a "Ribozyme without RNA"

03.11.2008
Not all enzymes that are assumed to require an RNA component in order to function do actually contain RNA.
This surprising discovery was made during a project supported by the Austrian Science Fund FWF that focussed on the enzyme RNase P. Contrary to accepted scientific theory, the project team from Vienna has long believed that certain forms of RNase P do not contain any RNA. They have now succeeded in proving their point through a series of sophisticated experiments, the results of which are being published today in the journal CELL.

Although ribozymes are not quite living fossils, these enzymes - which function only in the presence of RNA - hail from a long gone age when biochemical processes were still controlled by RNA molecules. It was only later that proteins came onto the molecular scene. RNase P, an enzyme that modifies transfer RNAs, is one such RNA enzyme (ribozyme). All previously characterised forms of this enzyme confirmed assumptions about their RNA component. Nevertheless, evidence has also been uncovered over the past 20 years that has cast doubt on the universality of this finding and indicated that this enzyme could be made up solely of proteins. The experts certainly had plenty to debate.

RNA NOT ALWAYS ESSENTIAL
But the debate seems to have been brought to an end. A group headed by Prof.
Walter Rossmanith at the Medical University of Vienna has provided conclusive evidence by successfully identifying the components of human mitochondrial RNase P. Prof. Rossmanith: "RNase P is made up of three proteins that are solely responsible for the catalytic capacity of the enzyme without any RNA. This discovery has not been made before because the enzyme breaks down easily during purification due to the loose connection between its components. The approach we developed enabled us to get around this problem. That was the breakthrough that enabled us to identify the proteins." Johann Holzmann, a PhD student and member of Prof. Rossmanith's team, explains further: "The most difficult task was to track down the proteins. Everything started to move much faster once we had done that. We produced the individual proteins separately in bacteria, purified them and then used them to reconstitute mitochondrial RNase P in vitro. This finally removed any shadow of doubt for us - and CELL: mitochondrial RNase P does not contain RNA."

REINVENTING THE WHEEL

The identification of the three proteins also resolved another previously unanswered question in molecular evolution research: How is a ribozyme replaced by a protein enzyme? The answer provided by data collected during the project is that the protein-only mitochondrial RNase P developed in parallel to a pre-existing ribozyme. Eventually, it replaced the latter. It is interesting to note that the three protein components have been recruited from entirely different biochemical pathways and yet they have nevertheless retained their original functions. Prof. Rossmanith adds: "We are also calling mitochondrial RNase P a patchwork enzyme, because it seems to be assembled from components available by chance at the time of its appearance in evolution." It is still unclear why only animal mitochondrial RNase P and not all ribozymes have been replaced by protein enzymes. Indeed, the results of this successful FWF project have opened the door to a whole range of questions - and answers.

Original publication:
"RNase P without RNA: Identification and functional reconstitution of the human mitochondrial tRNA processing enzyme"
J. Holzmann, P. Frank, E. Löffler, K. Bennett, C. Gerner & W. Rossmanith.
Cell 135, 462-474, October 31, 2008, DOI 10.1016/j.cell.2008.09.013


Scientific Contact:
Walter Rossmanith, PhD Medical
University of Vienna
Center for Anatomy & Cell Biology
Währingerstr. 13
1090 Vienna
Austria
M 0664 / 800 16 37 512
E walter.rossmanith@meduniwien.ac.at
Austrian Science Fund FWF:
Mag. Stefan Bernhardt
Haus der Forschung
Sensengasse 1
1090 Vienna
Austria
T +43 / 1 / 505 67 40 - 8111
E stefan.bernhardt@fwf.ac.at
Editing & Distribution:
PR&D - Public Relations for Research & Education Campus Vienna Biocenter 2 1030 Vienna Austria T +43 / 1 / 505 70 44 E contact@prd.at W http://www.prd.at

Ramona Seba | PR&D
Further information:
http://www.fwf.ac.at
http://www.meduniwien.ac.at
http://www.fwf.ac.at/en/public_relations/press/pv200811-en.html

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>