Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A molecular identity crisis - a "Ribozyme without RNA"

03.11.2008
Not all enzymes that are assumed to require an RNA component in order to function do actually contain RNA.
This surprising discovery was made during a project supported by the Austrian Science Fund FWF that focussed on the enzyme RNase P. Contrary to accepted scientific theory, the project team from Vienna has long believed that certain forms of RNase P do not contain any RNA. They have now succeeded in proving their point through a series of sophisticated experiments, the results of which are being published today in the journal CELL.

Although ribozymes are not quite living fossils, these enzymes - which function only in the presence of RNA - hail from a long gone age when biochemical processes were still controlled by RNA molecules. It was only later that proteins came onto the molecular scene. RNase P, an enzyme that modifies transfer RNAs, is one such RNA enzyme (ribozyme). All previously characterised forms of this enzyme confirmed assumptions about their RNA component. Nevertheless, evidence has also been uncovered over the past 20 years that has cast doubt on the universality of this finding and indicated that this enzyme could be made up solely of proteins. The experts certainly had plenty to debate.

RNA NOT ALWAYS ESSENTIAL
But the debate seems to have been brought to an end. A group headed by Prof.
Walter Rossmanith at the Medical University of Vienna has provided conclusive evidence by successfully identifying the components of human mitochondrial RNase P. Prof. Rossmanith: "RNase P is made up of three proteins that are solely responsible for the catalytic capacity of the enzyme without any RNA. This discovery has not been made before because the enzyme breaks down easily during purification due to the loose connection between its components. The approach we developed enabled us to get around this problem. That was the breakthrough that enabled us to identify the proteins." Johann Holzmann, a PhD student and member of Prof. Rossmanith's team, explains further: "The most difficult task was to track down the proteins. Everything started to move much faster once we had done that. We produced the individual proteins separately in bacteria, purified them and then used them to reconstitute mitochondrial RNase P in vitro. This finally removed any shadow of doubt for us - and CELL: mitochondrial RNase P does not contain RNA."

REINVENTING THE WHEEL

The identification of the three proteins also resolved another previously unanswered question in molecular evolution research: How is a ribozyme replaced by a protein enzyme? The answer provided by data collected during the project is that the protein-only mitochondrial RNase P developed in parallel to a pre-existing ribozyme. Eventually, it replaced the latter. It is interesting to note that the three protein components have been recruited from entirely different biochemical pathways and yet they have nevertheless retained their original functions. Prof. Rossmanith adds: "We are also calling mitochondrial RNase P a patchwork enzyme, because it seems to be assembled from components available by chance at the time of its appearance in evolution." It is still unclear why only animal mitochondrial RNase P and not all ribozymes have been replaced by protein enzymes. Indeed, the results of this successful FWF project have opened the door to a whole range of questions - and answers.

Original publication:
"RNase P without RNA: Identification and functional reconstitution of the human mitochondrial tRNA processing enzyme"
J. Holzmann, P. Frank, E. Löffler, K. Bennett, C. Gerner & W. Rossmanith.
Cell 135, 462-474, October 31, 2008, DOI 10.1016/j.cell.2008.09.013


Scientific Contact:
Walter Rossmanith, PhD Medical
University of Vienna
Center for Anatomy & Cell Biology
Währingerstr. 13
1090 Vienna
Austria
M 0664 / 800 16 37 512
E walter.rossmanith@meduniwien.ac.at
Austrian Science Fund FWF:
Mag. Stefan Bernhardt
Haus der Forschung
Sensengasse 1
1090 Vienna
Austria
T +43 / 1 / 505 67 40 - 8111
E stefan.bernhardt@fwf.ac.at
Editing & Distribution:
PR&D - Public Relations for Research & Education Campus Vienna Biocenter 2 1030 Vienna Austria T +43 / 1 / 505 70 44 E contact@prd.at W http://www.prd.at

Ramona Seba | PR&D
Further information:
http://www.fwf.ac.at
http://www.meduniwien.ac.at
http://www.fwf.ac.at/en/public_relations/press/pv200811-en.html

More articles from Life Sciences:

nachricht Meadows beat out shrubs when it comes to storing carbon
23.11.2017 | Norwegian University of Science and Technology

nachricht Migrating Cells: Folds in the cell membrane supply material for necessary blebs
23.11.2017 | Westfälische Wilhelms-Universität Münster

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New proton record: Researchers measure magnetic moment with greatest possible precision

High-precision measurement of the g-factor eleven times more precise than before / Results indicate a strong similarity between protons and antiprotons

The magnetic moment of an individual proton is inconceivably small, but can still be quantified. The basis for undertaking this measurement was laid over ten...

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Lightning, with a chance of antimatter

24.11.2017 | Earth Sciences

A huge hydrogen generator at the Earth's core-mantle boundary

24.11.2017 | Earth Sciences

Scientists find why CP El Niño is harder to predict than EP El Niño

24.11.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>