Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Would a molecular horse trot, pace or glide across a surface?

14.09.2010
UC Riverside chemists study quadrupedal molecular machines to provide an answer

Molecular machines can be found everywhere in nature, for example, transporting proteins through cells and aiding metabolism. To develop artificial molecular machines, scientists need to understand the rules that govern mechanics at the molecular or nanometer scale (a nanometer is a billionth of a meter).

To address this challenge, a research team at the University of California, Riverside studied a class of molecular machines that 'walk' across a flat metal surface. They considered both bipedal machines that walk on two 'legs' and quadrupedal ones that walk on four.

"We made a horse-like structure with four 'hooves' to study how molecular machinery can organize the motion of multiple parts," said Ludwig Bartels, a professor of chemistry, whose lab led the research. "A couple of years ago, we discovered how we can transport carbon dioxide molecules along a straight line across a surface using a molecular machine with two 'feet' that moved one step at a time. For the new research, we wanted to create a species that can carry more cargo – which means it would need more legs. But if a species has more than two legs, how will it organize their motion?"

Bartels and colleagues performed experiments in the lab and found that the quadrupedal molecules use a pacing gait – both legs on one side of the molecule move together, followed next by the two legs on the opposite side of the molecule. The species they created moved reliably along a line, not rotating to the side or veering off course. The researchers also simulated a trotting of the species, in which diagonally opposite hooves move together, and found that this form of movement distorted the species far too much to be viable.

Having established how the molecule moves, the researchers next addressed a fundamental question about molecular machinery: Does a molecule – or portions of it – simply tunnel through barriers presented by the roughness it encounters along its path?

"If it did, this would be a fundamental departure from mechanics in the macroscopic world and would greatly speed up movement," Bartels said. "It would be like driving on a bumpy road with the wheels of your car going through the bumps rather than over them. Quantum-mechanics is known to allow such behavior for very light particles like electrons and hydrogen atoms, but would it also be relevant for big molecules?"

Bartels and colleagues varied the temperature in their experiments to provide the molecular machines with different levels of energy, and studied how the speed of the machines varied as a consequence. They found that a machine with two legs can use tunneling to zip through the surface corrugation. But a machine with four (or potentially more) legs is not able to employ tunneling; while such a machine can coordinate the movement of its hooves in pacing, it cannot coordinate their tunneling, the researchers found.

"Thus, even at the tiniest scale, if you want to transport cargo fast, you need a light and nimble bipedal vehicle," Bartels said. "Larger vehicles may be able to carry more cargo, but because they cannot use tunneling effectively, they end up having to move slowly. Is this discouraging? Not really, because molecular machinery as a concept is still in its infancy. Indeed, there is an advantage to having a molecule move slowly because it allows us to observe its movements more closely and learn how to control them."

Study results appeared online last week in the Journal of the American Chemical Society, and will appear in print in an upcoming issue of the journal.

Next, the researchers plan to develop molecular machines whose motion can be controlled by light.

Currently, molecular machines are being studied intensely for their functions in biology and for their therapeutic value. For example, patients with GERD (Gastroesophageal reflux disease) are prescribed proton pump inhibitors, which slow the pumping action of biological molecular machines, thus reducing stomach acid levels.

"Generally, scientists' picture of the working of such biological molecular machinery completely disregards tunneling," Bartels said. "Our study corrects this perception, which may, in turn, lead to novel ways of controlling or correcting the behavior of biological molecular machines."

Artificial molecular machines are of interest to the microelectronic industry in its quest for smaller and smaller active elements in computers and for data storage. Artificial molecular machines potentially can also operate inside cells like their biological counterparts, greatly benefiting medicine.

Bartels's lab used the following molecules in the study: anthraquinone and pentaquinone (both bipedal); and pentacenetetrone and dimethyl pentacenetetrone (both quadrupedal).

The research was made possible by dedicated instrumentation developed and built in the Bartels lab. Bartels specializes in developing scanning tunneling microscopy instrumentation and applying it to molecular systems. Besides the Department of Chemistry, he holds appointments in the departments of physics, electrical engineering, mechanical engineering and the program in materials science and engineering.

He was joined in the study by the following researchers at UCR: postdoctoral scholar Zhihai Cheng; undergraduate student Eric S. Chu; graduate students Dezheng Sun, Daeho Kim, Yeming Zhu, MiaoMiao Luo, Greg Pawin, Kin L. Wong, Ki-Young Kwon and Robert Carp; and Michael Marsella, an associate professor of chemistry. Carp, who works in Marsella's lab, made dimethyl pentacenetetrone; the other chemicals used in the study are commercially available.

The research was supported by a Department of Energy grant to Bartels and a National Science Foundation (NSF) grant to Bartels and Marsella. The latter grant was rated in a recent review of the NSF Division of Chemistry as "an exemplar of excellence in support of the Division's investment in research, education, and infrastructure."

The University of California, Riverside (www.ucr.edu) is a doctoral research university, a living laboratory for groundbreaking exploration of issues critical to Inland Southern California, the state and communities around the world. Reflecting California's diverse culture, UCR's enrollment of about 18,000 is expected to grow to 21,000 students by 2020. The campus is planning a medical school and has reached the heart of the Coachella Valley by way of the UCR Palm Desert Graduate Center. The campus has an annual statewide economic impact of more than $1 billion.

A broadcast studio with fiber cable to the AT&T Hollywood hub is available for live or taped interviews. To learn more, call (951) UCR-NEWS.

Iqbal Pittalwala | EurekAlert!
Further information:
http://www.ucr.edu

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>