Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A molecular delivery service

30.08.2013
Tiny hair-like structures (cilia) are found on the surface of most cells. Cilia are responsible for the locomotion of cells (e.g. sperm cells), they process external signals and coordinate the correct arrangement of the inner organs during the development of an organism.

For proper assembly and function of cilia, they need to be supplied with the appropriate building blocks. Scientists at the MPI of Biochemistry (MPIB) in Martinsried near Munich, Germany, now identified the mechanism of how Tubulin, the main building block of cilia, is transported within the cilium. The results now published in the journal Science could help to understand and potentially prevent these diseases.


Building blocks for the assembly of a cilium are transported from the base to the tip of the cilium.
Copyright: Institut Pasteur, Paris

Although cilia fulfill various tasks, they all have a similar structure: They are only five to ten micrometers (0.0005 to 0.001 centimeters) long and are located on the surface of eukaryotic cells. About 600 different ciliary proteins are synthesized inside the cell and then transported into the cilium. Disruption of this transport system, which scientists call intraflagellar transport (IFT), can lead to errors during the assembly of the cilia and thus cause diseases resulting in mental and physical symptoms. Mistakes in ciliary function can for example cause a “situs inversus”, a condition where the left/right arrangement of the inner organs in the body is reversed.

Even though the importance of the intraflagellar transport (IFT) and the cilium to human health has been known for a long time, a structural and mechanistic understanding of IFT has been missing so far. Scientists from the research group “Intraflagellar Transport” headed by Esben Lorentzen now succeeded in identifying the transport mechanism of the key protein Tubulin. It is the most abundant protein in the cilium and forms its backbone. “We found that the two proteins IFT74 and IFT81 work together to form a tubulin-binding module,” says Sagar Bhogaraju. When the researchers disturbed the binding of IFT74 and -81 to tubulin in human cells, it had severe impact on the formation of the cilia. “Our results provide the first glimpse into the assembly of the cilium at the molecular level,” says the biochemist.

Original Publication:
Bhogaraju, S., Cajanek L., Fort, C., Blisnick, T. , Weber, K., Taschner, M., Mizuno, N., Lamla, S., Bastin, P., Nigg, E. and Lorentzen, E.: Molecular Basis of Tubulin Transport within the Cilium by IFT74 and IFT81, Science, August 30, 2013.

DOI: 10.1126/science.1240985

Contact:
Dr. Esben Lorentzen
Structural Biology of Cilia
Max Planck Institute of Biochemistry
Am Klopferspitz 18
82152 Martinsried
Germany
E-Mail: lorentze@biochem.mpg.de
Anja Konschak
Public Relations
Max Planck Institute of Biochemistry
Am Klopferspitz 18
82152 Martinsried
Germany
Tel. +49 89 8578-2824
E-Mail: konschak@biochem.mpg.de

Weitere Informationen:
http://www.biochem.mpg.de/1890328/074_Lorentzen_IFT
- Link to the Press Release
http://www.biochem.mpg.de/en/news/pressroom
- Press Releases of the MPI of Biochemistry
http://www.biochem.mpg.de/en/rg/lorentzen
- Website of the Research Group "Intraflagellar Transport"

Anja Konschak | Max-Planck-Institut
Further information:
http://www.biochem.mpg.de

Further reports about: Biochemistry IFT74 IFT81 IfT MPI Max Planck Institute Tubulin building block

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>