Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new model -- and possible treatment -- for staph bone infections

20.06.2013
Osteomyelitis – a debilitating bone infection most frequently caused by Staphylococcus aureus ("staph") bacteria – is particularly challenging to treat.
Now, Vanderbilt microbiologist Eric Skaar, Ph.D., MPH, and colleagues have identified a staph-killing compound that may be an effective treatment for osteomyelitis, and they have developed a new mouse model that will be useful for testing this compound and for generating additional therapeutic strategies.

James Cassat, M.D., Ph.D., a fellow in Pediatric Infectious Diseases who is interested in improving treatments for children with bone infections, led the mouse model studies. Working with colleagues in the Vanderbilt Center for Bone Biology and the Vanderbilt University Institute of Imaging Science, Cassat developed micro-computed tomography (micro-CT) imaging technologies to visualize a surgically introduced bone infection in progress.

"The micro-CT gives excellent resolution images of the damage that's being done to the bone," said Skaar, the Ernest W. Goodpasture Professor of Pathology. "We found that staph is not only destroying bone, but it's also promoting new bone growth. Staph is causing profound changes in bone remodeling."

Cassat also established methods for recovering – and counting – bacteria from the infected bone.

"We're not aware of any other bone infection models where you can pull the bacteria out of a bone and count them in a highly reproducible manner," Skaar said. "From a therapeutic development standpoint, we think this model is going to allow investigators to test new compounds for efficacy against bone infections caused by staph or any other bacteria that cause osteomyelitis."

Several pharmaceutical companies have already approached Skaar and his team about testing compounds in the new bone infection model, which the investigators describe in the June 12 issue of Cell Host & Microbe.

Using the model, the team demonstrated that a certain protein secreted by staph plays a critical role in the pathogenesis of osteomyelitis. Understanding the specific bacterial factors – and the bone cell signals – that promote bone destruction and formation during infection could lead to new strategies for restoring bone balance, Skaar said.

"Even if it's not possible to kill the bacteria, compounds that manipulate bone growth or destruction might have some therapeutic benefit."

Still, Skaar is interested in treatments that will eliminate the infection.

The staph bacteria involved in osteomyelitis and in other persistent infections (such as lung infections in cystic fibrosis) are often a sub-class of staph known as "small colony variants." These staph variants grow slowly and are resistant to entire classes of antibiotics commonly used to treat bone and lung infections, Skaar said.

One way that staph bacteria become antibiotic-resistant small colony variants is by changing the way they generate energy. Instead of using respiration, they switch to fermentation, which blocks antibiotic entry and slows bacterial growth.

In a high-throughput screen for compounds that activate a heme-sensing bacterial pathway, graduate student Laura Mike identified a compound that kills fermenting staph. The findings are reported in the May 14 issue of the Proceedings of the National Academy of Sciences.

"This is a completely new molecular activity," Skaar said. "We don't know of other molecules that are toxic against fermenting bacteria."

The compound – and derivatives synthesized by Gary Sulikowski, Ph.D., and his team – might be useful in treating staph small colony variants, or in preventing their emergence.

The investigators demonstrated in culture that treating staph with the antibiotic gentamicin forced it to become a small colony variant and ferment, and that co-treatment with the new compound prevented resistance and killed all of the bacteria.

"We think a really interesting therapeutic strategy for this compound is that it might augment the antimicrobial activity of existing classes of antibiotics by preventing resistance to them – it might extend the lifetime of these classes of antibiotics," Skaar said.

This would be similar to the drug Augmentin, which combines a traditional penicillin-type antibiotic and a compound that blocks bacterial resistance.

The investigators are excited to test the new compound in the mouse model of osteomyelitis. First, they will treat the mice with gentamicin and assess whether staph small colony variants form. If so, they will co-administer the new compound to test if it prevents resistance, and they will also assess it as a single treatment for the persistent infection.

Skaar stressed that Vanderbilt's collaborative environment made these studies possible. Daniel Perrien, Ph.D., and Florent Elefteriou, Ph.D., in the Vanderbilt Center for Bone Biology and colleagues in the Vanderbilt University Institute of Imaging Science were critical in facilitating development of the bone infection model. Sulikowski and other colleagues in the Vanderbilt Institute of Chemical Biology (VICB) enabled the compound development.

"This is exactly the kind of work the VICB is promoting – getting biologists like me together with chemists, to make new therapeutics," Skaar said.

The research was supported by the Searle Scholars Program and grants from the National Institutes of Health (AI069233, AI073843, RR027631, AI091856, HD060554), including the Southeastern Regional Center of Excellence for Emerging Infections and Biodefense (AI057157).

Leigh MacMillan | EurekAlert!
Further information:
http://www.vanderbilt.edu

More articles from Life Sciences:

nachricht At last, butterflies get a bigger, better evolutionary tree
16.02.2018 | Florida Museum of Natural History

nachricht New treatment strategies for chronic kidney disease from the animal kingdom
16.02.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>