Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A model system to elucidate the origin of protein-misfolding neurodegenerative diseases

28.11.2008
Amyotropic lateral sclerosis (ALS) is a neurodegenerative disease linked to the misfolding and aggregation of the dimers of the enzyme superoxide dismutase (SOD1).

Other neurodegenerative disorders like Alzheimer’s disease, Creutzfeld-Jakob disease and Parkinson’s disease are also associated with protein misfolding and aggregation.

Anna Nordlung and Mikael Oliveberg from the Department of Biochemistry and Biophysics, in Stockholm University, in Sweden have been studying the folding and assembly pathway of the SOD1 dimer and how this is affected by ALS-provoking mutations.

In a Perspective published in the HFSP Journal, they argue that the relative ease with which such data can be obtained for SOD1 makes it a promising model for elucidating also the origin of other neurodegenerative diseases where the precursor proteins are structurally more

elusive.

This Perspective is part of a special issue on protein folding, which also features:

• a Perspective by Adriano Aguzzi from the University of Zurich that discusses the relevance of protein folding or misfolding to Creutzfeld-Jakob disease

• Perspective review articles by Peter Wolynes from the University of California at San Diego, Victor Munoz from the Spanish Research Council and Jane Clarke from Cambridge University and an article by Koby Levy from the Weizmann Institute in Israel that discuss the physics and biophysics of protein folding

• Perspectives by Martin Gruebele from the University of Illinois and Edward Engelman from the University of Virginia and Commentaries by Pal Ormos from the Hungarian Academy of Sciences and Thomas Schneider from the European Molecular Biology Laboratory in Germany and that present new experimental advances that have allowed for probing in details of protein structure, folding and dynamics

• Finally, articles by Sophie Jackson from Cambridge University and Lisa Lapidus from Michigan State University describe the folding of the model protein green fluorescent protein GFP and protein L respectively, and an article by Martin Mann from the University of Freiburg, Germany presents a computational model to predict protein folding and three-dimensional structures.

This special issue was Edited by Jose’ Onuchic from the Center for Theoretical Biological Physics and Department of Physics of the University of California at San Diego.

Valerie Ferrier | alfa
Further information:
http://hfspj.aip.org

More articles from Life Sciences:

nachricht Programming cells with computer-like logic
27.07.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht Identified the component that allows a lethal bacteria to spread resistance to antibiotics
27.07.2017 | Institute for Research in Biomedicine (IRB Barcelona)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Programming cells with computer-like logic

27.07.2017 | Life Sciences

Identified the component that allows a lethal bacteria to spread resistance to antibiotics

27.07.2017 | Life Sciences

Malaria Already Endemic in the Mediterranean by the Roman Period

27.07.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>