Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Novel Mechanism That Regulates Pro Inflammatory Cells Is Identified

12.08.2011
Discovery Has Implications For Autoimmune Diseases, HIV Infection and Possibly In Cancer As A Biomarker and In The Development of New Treatments

New research led by Derya Unutmaz, MD associate professor, the Departments of Pathology, Medicine, and Microbiology at NYU School of Medicine and Mark Sundrud, PhD, of Tempero Pharmaceuticals, Inc., has identified a novel sensory pathway that modulates the potency of Th17 cell responses.

The new research is highlighted in the August 8th online edition of the Journal of Experimental Medicine. The study has found that when memory Th17 cells are exposed to a class of secreted proteins called gamma-c cytokines (IL-2, IL-15 or IL-7), they become armed to release their potent immune mediators, which are also a family of cytokines (such as IL-17 and IL-22).

The immune system has evolved to respond to external threats such as viral and bacterial infections. However, the immune response is also tightly regulated to prevent excessive tissue damage or autoimmune diseases, resulting from a reaction produced by white blood cells or antibodies acting on the body. A subset of T lymphocytes called Th17 cells has powerful functions to sustain and mediate protective immune responses against some bacterial and fungal infections. Th17 cells are also implicated in excessive inflammatory autoimmune diseases such as psoriasis and multiple sclerosis. How Th17 cells regulate their potent immune functions has not been fully understood.

Cytokines such as IL-2 or IL-7, which share a common receptor component (called gamma-c) are released by other T cells or specialized non-lymphoid cells. This family of cytokines is critical in the development, survival, proliferation and differentiation of T cell subsets. Gamma-c cytokines activate several signaling pathways within the cells that lead to activation of transcription factors, which then turn on and off specific genes. The researchers found that gamma-c cytokines induced Th17 cell function by activating a specific pathway involving the kinases PI-3K and Akt. They further showed that two transcription factors called FOXO1 and KLF2, which are normally inhibited by PI-3K and Akt activity, suppress the production of Th17 cytokines when overexpressed, even if PI-3K and Akt are fully active. These lines of evidence highlight a novel anti-inflammatory mechanism of action for PI-3K and Akt inhibitors, some of which are in clinical development for cancer-related indications.

“The Th17 subset of T cells have potent weapons. It seems the level of gamma-c cytokines in the local environment acts as a danger signal, it tells Th17 cells to load their weapons and ready to fire if they are triggered by the enemy,” said Dr. Unutmaz.

Because of their importance in infectious and autoimmune diseases, the proportion of Th17 cells in the blood of an individual has become a useful biomarker when evaluating autoimmune disease progression or patient responses to treatments. The current method to quantify Th17 cells in blood or tissues involves looking at the secretion of their characteristic cytokines (i.e., IL-17 or IL-22) directly after the cells have been isolated. However, the researchers in this study noticed that this type of “ex vivo” cytokine analysis underestimates the frequency of Th17 cells in the blood of both healthy individuals and rheumatoid arthritis patients. In fact, the majority of human Th17 cells in blood displayed a “poised” phenotype, expressing neither IL-17 nor IL-22 unless they were first stimulated with gamma-c cytokines. This finding has important implications, both for how T cells are classified based on cytokine expression, and how Th17 cells are enumerated in human clinical investigations.

“There are many published studies that have relied on counting human Th17 cells based on their ability to secrete IL-17 out of the blood. We will have to be more careful interpreting these results, since a significant portion of Th17 reserves are not detected by current assays,” said Dr. Unutmaz.

The findings in this study also underscore the local tissue environment in modulating the function of T cells. The researchers speculate that the Th17 cells sense the micro-environment for signs of inflammation, which can be caused by bacterial infections, and accordingly decide how potently they should respond. However, if the inflammatory milieu is unregulated or triggered by self-antigens and sustained by local cells, Th17 cells can cause in responses that are either unwanted or not proportionate to the external insults. So manipulating the novel regulatory mechanisms discovered in this study could lead to more specific treatments that can fine-tune the imbalance of the immune responses.

“An immune response mediated by Th17 cells is dangerous like a double-edged sword, they can do more harm than good if not controlled. We now know what excites Th17 cells to be armed. If we can find drugs that can turn this pathway on and off, we could potentially induce them when needed and prevent their unwanted responses that results in autoimmune diseases,” said Dr. Unutmaz.

The authors are Qi Wan, MD, Lina Kozhaya, MS, and Aimee El Hed, PhD, of the Department of Microbiology, NYU School of Medicine; Radha Ramesh, BA, Thaddeus J. Carlson, PhD , Ivana M. Djuretic, PhD, and Mark S. Sundrud, PhD, Discovery Biology, Tempero Pharmaceuticals, Inc.; and Derya Unutmaz, MD, Departments of Microbiology, Pathology and Medicine, NYU School of Medicine.

Human memory T cells (TM cells) that produce IL-17 or IL-22 are currently defined as Th17 or Th22 cells, respectively.

This work was supported by National Institutes of Health grants R21AI087973 and R01AI065303.

Disclosures: R. Ramesh, I.M. Djuretic, T.J. Carlson, and M.S. Sundrud are affiliated with a commercial organization, Tempero Pharmaceuticals, Inc., which also

provided financial support to the laboratory of D. Unutmaz at New York University.

The authors have no conflicting or competing financial interests.

We thank Frances Mercer, Angie Zhou, Stephen Rawlings, and Dr. Alka Khaitan for critical reading and suggestions, Dr. Terry G. Unterman for the FOXO1 plasmid, and Dr. Dan Littman for the RORC plasmid.

About NYU School of Medicine:
NYU School of Medicine is one of the nation’s preeminent academic institutions dedicated to achieving world class medical educational excellence. For 170 years, NYU School of Medicine has trained thousands of physicians and scientists who have helped to shape the course of medical history and enrich the lives of countless people. An integral part of NYU Langone Medical Center, the School of Medicine at its core is committed to improving the human condition through medical education, scientific research and direct patient care. The School also maintains academic affiliations with area hospitals, including Bellevue Hospital, one of the nation’s finest municipal hospitals where its students, residents and faculty provide the clinical and emergency care to New York City’s diverse population, which enhances the scope and quality of their medical education and training. Additional information about the NYU School of Medicine is available at http://school.med.nyu.edu/.

Christopher Rucas | Newswise Science News
Further information:
http://www.nyumc.org
http://school.med.nyu.edu/

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>