Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A mechanism of how biodiversity arises

27.05.2014

A new study of how biodiversity arises shows how a mutation in a single gene during development can lead to different consequences not only in jaw shape, but how this leads to different feeding strategies to exploit different ecological niches

A new study of how biodiversity arises, by evolutionary biologists at the University of Massachusetts Amherst, shows how a mutation in a single gene during development can lead to different consequences not only in how animals' skull and jaw are shaped, but how this leads to different feeding strategies to exploit different ecological niches.


For these experiments, Hu and Albertson consider the fish skull not simply as a collection of bones, ligaments and muscle, but as a dynamic mechanical device capable of a complex range of movements. Preparation of a cichlid craniofacial skeleton in the ventral view. The bone is stained red and cartilage blue.

Credit: R. Craig Albertson

The study in the cichlid fish model by Yinan Hu, a doctoral student in organismic and evolutionary biology, with his advisor Craig Albertson, is among the first to address how a single genetic change can influence both trait development and function. Results appear in the current early online issue of Proceedings of the National Academy of Sciences.

Until now, Albertson explains, the field of evolutionary developmental biology (evo-devo) has focused mainly on connecting gene-level changes with the evolution of different anatomical shapes, or morphology, but the field has been less successful in revealing how these anatomical changes influence how an organism performs in its specific environment. This has left a gap in understanding of what allows species to adapt to new environments.

"It is not the shape of an organism that determines fitness per se," he notes, "rather it is how an organism interfaces with its environment that determines its survival. Shape tells part of this story, but function gets you a lot closer to understanding how well suited an animal is to its surroundings. In this paper, I think we have extended the discussion of how genes and genetic variation influence ecological fitness."

For this work, Hu and Albertson combined traditional genetic mapping and experimental embryology to show how changes in the ptch1 ("patch1") gene, a member of the hedgehog signaling pathway, alter skull and jaw development in African cichlid fishes, leading to pronounced shape changes in the adult. They also modeled the skulls of these fishes to show how this genetic variation and its anatomical consequences predict differences in feeding mechanics.

African cichlids are an ideal model system for studying how biodiversity originates and it is maintained over time, Albertson says, because it is "unprecedented in terms of the number of species that have evolved in a brief period of geological time."

As Hu explains, "Patch1 is a well studied gene involved in various aspects of building organisms over development. What we show is how differential deployment of this gene over development can lead to changes in the skull that should have pronounced effects on how that fish makes a living."

"One form of the gene helps to produce faster moving jaws that are better able to collect highly mobile prey. The alternate form leads to the development of jaws that are slower but more powerful, which is better for consuming hard prey. It accomplishes this by altering many bones in the head at once. In other words, these simple genetic variants should go a long way toward allowing organisms to carve out different ecological niches," he adds.

For these experiments, Hu and Albertson consider the fish skull not simply as a collection of bones, ligaments and muscle, but as a dynamic mechanical device capable of a complex range of movements. Specifically, they borrowed the mechanical engineering principal of four-bar linkages, a simple movable chain with four joints, to understand how genetically induced changes in the skull translate to differences in jaw movement efficiency.

Fish skulls are dynamic entities with many bony elements capable of moving independently of one another. Biologists have used mechanical engineering concepts to help make sense of this complexity. Hu and Albertson note in this study that genetic changes in ptch1 result in changes in the length of two of three movable links in this four-bar system. The result is two different skull forms with different predicted kinematics, or geometries of jaw motion.

Speaking to these changes in jaw shape and kinematics, Albertson says, "The effects of different ptch1 variants on jaw development may help to explain how this group has managed to evolve so many species in such a brief period of time. A single genetic change affects multiple skeletal elements in a way that influences feeding mechanics. Natural selection doesn't need to coordinate changes at multiple places in the genome to enable a species to adapt to a new environment. A small number of changes is likely sufficient to enable competing species to carve out different niches, enabling their coexistence. This is really the crux of biodiversity, how efficiently species are able to adapt in a changing environment."

While the effects of ptch1 on cichlid development described here are limited to the lower jaw, in another recent paper in Nature Communications Albertson and colleagues show how changes in a second well characterized molecular pathway, the Wnt/β-catenin pathway, can lead to functionally relevant changes in the cichlid upper jaw.

Janet Lathrop | Eurek Alert!

Further reports about: Amherst Biodiversity cichlid ecological effects enable evo-devo function genetic mapping pathway species

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>