Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A matter of priorities - Bacteria evolved way to safeguard crucial genetic material

23.04.2012
Just as banks store away only the most valuable possessions in the most secure safes, cells prioritise which genes they guard most closely, researchers at the European Molecular Biology Laboratory’s European Bioinformatics Institute (EMBL-EBI) have found.

The study, published online today in Nature, shows that bacteria have evolved a mechanism that protects important genes from random mutation, effectively reducing the risk of self-destruction. The findings answer a question that has been under debate for half a century and provide insights into how disease-causing mutations arise and pathogens evolve.

“We discovered that there must be a molecular mechanism that preferentially protects certain areas of the genome over others,” says Nicholas Luscombe, who led the research at EMBL-EBI. “If we can identify the proteins involved and uncover how this works, we will be even closer to understanding how mutations that lead to diseases like cancer can be prevented.”

Mutations are the reason each of us is unique. These changes to our genetic material are at the root of variation between individuals, and between cells within individuals. But they also have a darker side. If it affects an important gene – for example, rendering a tumour-suppressing gene useless – a mutation can have disastrous consequences. Nevertheless, protecting all genes from mutation would use up too many of the cell’s resources, just like holding all deposits in maximum-security safes would be prohibitively expensive. Iñigo Martincorena, a PhD student in Luscombe’s lab, has now found that cells evolved a ‘risk management’ strategy to address this issue.

Looking at 120 000 tiny genetic mutations called single nucleotide polymorphisms (SNPs) in 34 strains of the bacterium E. coli, the scientists were able to quantify how random the mutation rate was in different areas of the bacterial genomes. Their results showed that key genes mutate at a much lower rate than the rest of the genetic material, which decreases the risk of such genes suffering a detrimental mutation.

“We were struck by how variable the mutation rate appears to be along the genome,” says Martincorena. “Our observations suggest these bacteria have evolved a clever mechanism to control the rate of evolution in crucial areas of the genome.”

Using population genetics techniques, the researchers were able to disentangle the effects of mutation rate and natural selection on mutations, settling a long-standing debate in the field. Scientists have long thought that the chances of a mutation occurring were independent of its value to an organism. Once the mutation had occurred, it would undergo natural selection, spreading through the population or being eliminated depending on how beneficial or detrimental the genetic change proved to be.

“For many years in evolution there has been an assumption that mutations occur randomly, and that selection ‘cleans them up’,” explains Martincorena. “But what we see here suggests that genomes have developed mechanisms to avoid mutations in regions that are more valuable than others.”

Observations from studies of cancer genomes suggest that similar mechanisms may be involved in the development of cancers, so Luscombe and colleagues would now like to investigate exactly how this risk-managing gene protection works at a molecular level, and what role it may play in tumour cells.

Published online in Nature on 22 April 2012. DOI: 10.1038/nature10995.

Policy regarding use
EMBL press and picture releases including photographs, graphics, movies and videos are copyrighted by EMBL. They may be freely reprinted and distributed for non-commercial use via print, broadcast and electronic media, provided that proper attribution to authors, photographers and designers is made.
Sonia Furtado Neves
EMBL Press Officer
Meyerhofstr. 1, 69117 Heidelberg, Germany
Tel.: +49 (0)6221 387 8263
Fax: +49 (0)6221 387 8525
sonia.furtado@embl.de

Sonia Furtado Neves | EMBL Research News
Further information:
http://www.embl.org

More articles from Life Sciences:

nachricht Separating methane and CO2 will become more efficient
18.10.2017 | KU Leuven

nachricht Bolstering fat cells offers potential new leukemia treatment
17.10.2017 | McMaster University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>