Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A matter of priorities - Bacteria evolved way to safeguard crucial genetic material

23.04.2012
Just as banks store away only the most valuable possessions in the most secure safes, cells prioritise which genes they guard most closely, researchers at the European Molecular Biology Laboratory’s European Bioinformatics Institute (EMBL-EBI) have found.

The study, published online today in Nature, shows that bacteria have evolved a mechanism that protects important genes from random mutation, effectively reducing the risk of self-destruction. The findings answer a question that has been under debate for half a century and provide insights into how disease-causing mutations arise and pathogens evolve.

“We discovered that there must be a molecular mechanism that preferentially protects certain areas of the genome over others,” says Nicholas Luscombe, who led the research at EMBL-EBI. “If we can identify the proteins involved and uncover how this works, we will be even closer to understanding how mutations that lead to diseases like cancer can be prevented.”

Mutations are the reason each of us is unique. These changes to our genetic material are at the root of variation between individuals, and between cells within individuals. But they also have a darker side. If it affects an important gene – for example, rendering a tumour-suppressing gene useless – a mutation can have disastrous consequences. Nevertheless, protecting all genes from mutation would use up too many of the cell’s resources, just like holding all deposits in maximum-security safes would be prohibitively expensive. Iñigo Martincorena, a PhD student in Luscombe’s lab, has now found that cells evolved a ‘risk management’ strategy to address this issue.

Looking at 120 000 tiny genetic mutations called single nucleotide polymorphisms (SNPs) in 34 strains of the bacterium E. coli, the scientists were able to quantify how random the mutation rate was in different areas of the bacterial genomes. Their results showed that key genes mutate at a much lower rate than the rest of the genetic material, which decreases the risk of such genes suffering a detrimental mutation.

“We were struck by how variable the mutation rate appears to be along the genome,” says Martincorena. “Our observations suggest these bacteria have evolved a clever mechanism to control the rate of evolution in crucial areas of the genome.”

Using population genetics techniques, the researchers were able to disentangle the effects of mutation rate and natural selection on mutations, settling a long-standing debate in the field. Scientists have long thought that the chances of a mutation occurring were independent of its value to an organism. Once the mutation had occurred, it would undergo natural selection, spreading through the population or being eliminated depending on how beneficial or detrimental the genetic change proved to be.

“For many years in evolution there has been an assumption that mutations occur randomly, and that selection ‘cleans them up’,” explains Martincorena. “But what we see here suggests that genomes have developed mechanisms to avoid mutations in regions that are more valuable than others.”

Observations from studies of cancer genomes suggest that similar mechanisms may be involved in the development of cancers, so Luscombe and colleagues would now like to investigate exactly how this risk-managing gene protection works at a molecular level, and what role it may play in tumour cells.

Published online in Nature on 22 April 2012. DOI: 10.1038/nature10995.

Policy regarding use
EMBL press and picture releases including photographs, graphics, movies and videos are copyrighted by EMBL. They may be freely reprinted and distributed for non-commercial use via print, broadcast and electronic media, provided that proper attribution to authors, photographers and designers is made.
Sonia Furtado Neves
EMBL Press Officer
Meyerhofstr. 1, 69117 Heidelberg, Germany
Tel.: +49 (0)6221 387 8263
Fax: +49 (0)6221 387 8525
sonia.furtado@embl.de

Sonia Furtado Neves | EMBL Research News
Further information:
http://www.embl.org

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>