Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A matter of give and take

12.07.2010
Sheets of cells stick together by monitoring and responding to the pull of their neighbors

Many surfaces within the body are lined with tightly interconnected sheets of epithelial cells, with individual cells tethered to one another via complexes known as adherens junctions (AJs).

These sheets undergo considerable reorganization during embryonic development and wound healing; accordingly, AJs are not merely ‘cellular staples’, but appear to provide an important mechanism for monitoring adjacent cells. “I imagine that cells confirm whether their neighbors are alive and have the same adhesion molecules by ‘pulling’ adjacent cells through AJs,” explains Shigenobu Yonemura, of the RIKEN Center for Developmental Biology in Kobe. “Dead cells cannot pull back, and thus would not be recognized as members of the epithelial cell sheet.”

Yonemura’s team has uncovered evidence that AJs counter tensions generated through intercellular interactions via their associations with cytoskeletal actin filaments, spotlighting a potentially important association between AJ component á–catenin and the actin-binding protein vinculin1. By further exploring the relationship between these two proteins, his team has now achieved a breakthrough in understanding AJ-mediated force detection2.

The researchers identified a vinculin-binding region in the middle of á-catenin, but also identified a second segment of the protein that actively inhibits this interaction. At one end, á-catenin also contains an actin-binding region, and Yonemura and colleagues found that this association appears to be essential for relieving this self-inhibition, suggesting that the á-catenin–vinculin interaction is force-dependent.

Subsequent experiments enabled the team to construct a model in which á-catenin is normally collapsed like an accordion, with the inhibitory domain masking the vinculin binding site. However, increased tension extends the protein and exposes this site, enabling further interactions with the cytoskeleton that effectively counter the force pulling against a given AJ. The result is essentially a ‘tug of war’ between cells, with the integrity of the epithelium hanging in the balance.

If accurate, this model offers a simple explanation for how epithelial cells can react rapidly to rearrangements in their local environment. “The central part of the mechanism involves the protein structure of á-catenin—no enzymatic reaction is required,” says Yonemura. “Because of this, sensing and response take place at the same time and place.”

His team is now designing experiments to confirm this á-catenin rearrangement in response to applied force, but Yonemura believes they may have potentially uncovered a broadly relevant model for cellular communication. “Because the mechanism is so simple, I think that it could be fundamental and used among a wide variety of cells,” he says.

The corresponding author for this highlight is based at the Electron Microscope Laboratory, RIKEN Center for Developmental Biology

Journal information

1. Miyake, Y., Inoue, N., Nishimura, K., Kinoshita, N., Hosoya, H. & Yonemura, S. Actomyosin tension is required for correct recruitment of adherens junction components and zonula occludens formation. Experimental Cell Research 312, 1637–1650 (2006)

2. Yonemura, S., Wada, Y., Watanabe, T., Nagafuchi, A. & Shibata, M. á-Catenin as a tension transducer that induces adherens junction development. Nature Cell Biology 12, 533–542 (2010)

gro-pr | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/eng/research/6326
http://www.researchsea.com

More articles from Life Sciences:

nachricht Opening the cavity floodgates
23.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Incentive to Move
23.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks Industry & Economy
Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Researchers reveal how microbes cope in phosphorus-deficient tropical soil

23.01.2018 | Earth Sciences

Opening the cavity floodgates

23.01.2018 | Life Sciences

Siberian scientists suggested a new method for synthesizing a promising magnetic material

23.01.2018 | Materials Sciences

VideoLinks Science & Research
Overview of more VideoLinks >>>