Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A matter of give and take

12.07.2010
Sheets of cells stick together by monitoring and responding to the pull of their neighbors

Many surfaces within the body are lined with tightly interconnected sheets of epithelial cells, with individual cells tethered to one another via complexes known as adherens junctions (AJs).

These sheets undergo considerable reorganization during embryonic development and wound healing; accordingly, AJs are not merely ‘cellular staples’, but appear to provide an important mechanism for monitoring adjacent cells. “I imagine that cells confirm whether their neighbors are alive and have the same adhesion molecules by ‘pulling’ adjacent cells through AJs,” explains Shigenobu Yonemura, of the RIKEN Center for Developmental Biology in Kobe. “Dead cells cannot pull back, and thus would not be recognized as members of the epithelial cell sheet.”

Yonemura’s team has uncovered evidence that AJs counter tensions generated through intercellular interactions via their associations with cytoskeletal actin filaments, spotlighting a potentially important association between AJ component á–catenin and the actin-binding protein vinculin1. By further exploring the relationship between these two proteins, his team has now achieved a breakthrough in understanding AJ-mediated force detection2.

The researchers identified a vinculin-binding region in the middle of á-catenin, but also identified a second segment of the protein that actively inhibits this interaction. At one end, á-catenin also contains an actin-binding region, and Yonemura and colleagues found that this association appears to be essential for relieving this self-inhibition, suggesting that the á-catenin–vinculin interaction is force-dependent.

Subsequent experiments enabled the team to construct a model in which á-catenin is normally collapsed like an accordion, with the inhibitory domain masking the vinculin binding site. However, increased tension extends the protein and exposes this site, enabling further interactions with the cytoskeleton that effectively counter the force pulling against a given AJ. The result is essentially a ‘tug of war’ between cells, with the integrity of the epithelium hanging in the balance.

If accurate, this model offers a simple explanation for how epithelial cells can react rapidly to rearrangements in their local environment. “The central part of the mechanism involves the protein structure of á-catenin—no enzymatic reaction is required,” says Yonemura. “Because of this, sensing and response take place at the same time and place.”

His team is now designing experiments to confirm this á-catenin rearrangement in response to applied force, but Yonemura believes they may have potentially uncovered a broadly relevant model for cellular communication. “Because the mechanism is so simple, I think that it could be fundamental and used among a wide variety of cells,” he says.

The corresponding author for this highlight is based at the Electron Microscope Laboratory, RIKEN Center for Developmental Biology

Journal information

1. Miyake, Y., Inoue, N., Nishimura, K., Kinoshita, N., Hosoya, H. & Yonemura, S. Actomyosin tension is required for correct recruitment of adherens junction components and zonula occludens formation. Experimental Cell Research 312, 1637–1650 (2006)

2. Yonemura, S., Wada, Y., Watanabe, T., Nagafuchi, A. & Shibata, M. á-Catenin as a tension transducer that induces adherens junction development. Nature Cell Biology 12, 533–542 (2010)

gro-pr | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/eng/research/6326
http://www.researchsea.com

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>