Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Matter of Density, Not Quantity

10.07.2009
Individual bacterial cells are capable of quorum sensing when confined in small volumes

Infections of wounds, pneumonia, etc. in hospitals in particular are often caused by bacteria called Pseudomonas aeruginosa.

Once they reach a certain density, colonies of Pseudomonas aeruginosa produce virulence factors and can enter into a slimy state, a biofilm, which prevents antibiotics from penetrating. The process of quorum sensing, which cells use to “sense” cell density, is triggered when the concentration of certain signaling compounds generated by the bacteria reaches a threshold level.

A team working with Rustem F. Ismagilov at the University of Chicago has now demonstrated that the absolute number of cells is irrelevant; only the number of bacteria in a given volume plays a role. As the researchers report in the journal Angewandte Chemie, they were even able to trigger quorum-sensing processes in single cells when these were confined in extremely small volumes.

The term, quorum sensing, is derived from the Latin quorum; in politics, this is the number of votes that must be cast for an election or referendum to be valid. In biology, quorum sensing is defined as a process by which cells are able to detect the accumulation of a released signal and then change their behavior when the signal concentration exceeds a threshold level.

Traditionally, quorum sensing is thought to help microorganisms to coordinate processes that would be inefficient in single cells, such as the formation of biofilms. Quorum sensing can also prevent too many bacteria from colonizing too small an area. However, the work of Ismagilov’s team has shown that quorum sensing is also activated by a single cell if the cell finds itself in an extremely enclosed space, which raises questions as to how quorum-sensing-regulated processes are relevant both to large colonies of cells and to single cells in confined spaces.

In order to investigate this phenomenon, two different approaches can be taken: either seed a macroscopic volume with bacteria and wait for them to reach the required population through cell division, or enclose a few cells in an extremely tiny volume. The necessary signaling compounds can also become sufficiently concentrated by this route because the released signals cannot diffuse far away from the cell but instead accumulate around the cell. “In the past, the first strategy has dominated. This has led to the general view that quorum sensing is a process to coordinate the behavior of large groups of cells,” says Ismagilov. “This overlooks the possibility that small groups of cells could also initiate quorum sensing if they are confined to a sufficiently small volume. The quorum-sensing metabolic processes are relevant to a number of cellular functions, including the growth of small numbers of cells at the early stages of biofilm formation or the early stages of an infection.”

By using a microfluidic experimental array, the team was able to isolate droplets with a volume of about 100 femtoliters (100 quadrillionths of a liter), each containing only one or very few cells of Pseudomonas aeruginosa. Even with these extremely low cell counts, the researchers were able to observe that quorum sensing was triggered in many cases. “This unambiguously refutes the notion that millions of cells are required for quorum sensing,” says Ismagilov.

Author: Rustem F. Ismagilov, University of Chicago (USA), http://ismagilovlab.uchicago.edu/index.html

Title: Microfluidic Confinement of Single Cells of Bacteria in Small Volumes Initiates High-Density Behavior of Quorum Sensing and Growth and Reveals Its Variability

Angewandte Chemie International Edition 2009, 48, No. 32, doi: 10.1002/anie.200901550

Rustem F. Ismagilov | Angewandte Chemie
Further information:
http://ismagilovlab.uchicago.edu/index.html
http://pressroom.angewandte.org

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>