Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A-maize-ing double life of a genome

15.07.2014

Early maize farmers selected for genes that improved the harvesting of sunlight, a new detailed study of how plants use 'doubles' of their genomes reveals. The findings could help current efforts to improve existing crop varieties.

Oxford University researchers captured a 'genetic snapshot' of maize as it existed 10 million years ago when the plant made a double of its genome – a 'whole genome duplication' event.

They then traced how maize evolved to use these 'copied' genes to cope with the pressures of domestication, which began around 12,000 years ago. They discovered that these copied genes were vital to optimising photosynthesis in maize leaves and that early farmers selecting for them 'fuelled' the transformation of maize into a high-yield crop.

A report of the research is published this week in the journal Genome Research.

'Although whole genome duplication events are widespread in plants finding evidence of exactly how plants use this new 'toolbox' of copied genes is very difficult,' said Dr Steve Kelly of Oxford University's Department of Plant Sciences, lead author of the report.

'With crops like wheat it's not yet possible for us to unravel the 'before and after' of the associated genetic changes, but with maize we can chart how these gene copies were first acquired, then put to work, and finally 'whittled down' to create the modern maize plant farmed today.'

It is particularly useful for such genetic detective work that close relatives of maize did not duplicate their genomes 10 million years ago: those that retained a single copy went on to become the plant we now know as sorghum. This enabled the researchers to compare genetic data from these 'duplicated' and 'non-duplicated' descendants of ancient maize, something that is not yet possible with other duplicated crops like wheat.

In the wild plants have to overcome the challenges posed by pathogens and predators in order to survive. However, once domestication by humans began plants grown as crops had to cope with a new set of artificial selection pressures, such as delivering a high yield and greater stress tolerance.

'Whole genome duplication events are key in allowing plants to evolve new abilities,' said Dr Kelly. 'Understanding the complete trajectory of duplication and how copied genes can transform a plant is relevant for current efforts to increase the photosynthetic efficiency of crops, such as the C4 Rice Project [c4rice.irri.org/].

Our study is great evidence that optimising photosynthesis is really important for creating high-yield crops and shows how human selection has 'sculpted' copies of genes to create one of the world's staple food sources.'

University of Oxford News Office | Eurek Alert!
Further information:
http://www.ox.ac.uk

Further reports about: Genome crops domestication farmers genes leaves maize photosynthesis pressures

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>