Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Magic Process

15.05.2013
A Bottom-up process for making dodecane-in-water nanoemulsions

A new process for generating nanometer-scale oil droplets in water has been reported in the journal Angewandte Chemie by Japanese researchers, who have developed a technique they named MAGIQ (monodisperse nanodroplet generation in quenched hydrothermal solution).

Under standard conditions, hydrocarbons and water do not mix; however, at high temperatures and high pressures near the critical point of water, they freely mix. Quenching homogeneous solutions of dodecane and water under these conditions in the presence of a detergent produces nanoemulsions in just ten seconds.

Oil and water are not miscible but can form emulsions in which tiny droplets of one component are dispersed in the other. Milk, face creams, and printer’s ink are examples of emulsions. Nanoemulsions with droplets that have diameters in the 20 to 200 nm range have recently attracted more attention.

Because of their small droplet size, they are transparent or translucent and are much slower to separate. In addition, there are potentially interesting new applications for them, either in pharmaceutical or cosmetic formulations that are easier to absorb, or as “nanoreactors” for the production of nanomaterials.

Emulsions are usually made by a “top-down” process.

Mixtures of water, oil, and surfactant are subjected to external forces, such as vigorous stirring, to break up larger drops into smaller ones. This becomes harder as the droplets get smaller, so this method has inherent limits. In contrast, solid nanoparticles are usually produced in a “bottom-up” process. This begins with a homogeneous solution. The dissolved molecules aggregate to make nanoparticles. This could also be a possible method to make nanodroplets. The problem is that water and oil would have to form a homogeneous solution to start from, but they are not miscible.

Shigeru Deguchi and Nao Ifuku at the Japan Agency for Marine-Earth Science and Technology in Yokosuka have now found a way around this with their new MAGIQ process. When water is heated under pressure it reaches its critical point at 374 °C and 22.1 MPa. At this point there is no longer a difference between the liquid and gas phases. The water no longer dissociates and no clusters of water molecules can form.

At this point, the properties of the water are like those of an oil—the researchers used dodecane in this case—and the two can be freely mixed together. When this homogeneous solution is quenched with cold water, a very rapid phase separation occurs, resulting in extremely small droplets in less than ten seconds. Addition of a detergent stabilizes the nanoemulsion. The researchers developed an apparatus in which they can carry out their “magic” technique in a constant flow process. The cooling temperature and speed, the ratio of water to dodecane in the mixture, and the concentration of detergent determine the—very uniform—size of the droplets.

About the Author
Dr. Shigeru Deguchi is a principal scientist at the Japan Agency for Marine-Earth Science and Technology and also an adjunct professor at Yokohama City University. His current research interests include soft materials in extreme conditions, white nanobiotechnology, and extremophiles. He is the recipient of the Osawa Award, Takagi Award, and Ichimura Prize in Technology.
Author: Shigeru Deguchi, Agency for Marine-Earth, Yokosuka (Japan), http://www.xbr.jp/yokohama-cu/deguchi/contact/index_e.html
Title: Bottom-Up Formation of Dodecane-in-Water Nanoemulsions from Hydrothermal Homogeneous Solutions

Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201301403

Shigeru Deguchi | Angewandte Chemie
Further information:
http://pressroom.angewandte.org
http://www.xbr.jp/yokohama-cu/deguchi/contact/index_e.html

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>