Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Magic Process

15.05.2013
A Bottom-up process for making dodecane-in-water nanoemulsions

A new process for generating nanometer-scale oil droplets in water has been reported in the journal Angewandte Chemie by Japanese researchers, who have developed a technique they named MAGIQ (monodisperse nanodroplet generation in quenched hydrothermal solution).

Under standard conditions, hydrocarbons and water do not mix; however, at high temperatures and high pressures near the critical point of water, they freely mix. Quenching homogeneous solutions of dodecane and water under these conditions in the presence of a detergent produces nanoemulsions in just ten seconds.

Oil and water are not miscible but can form emulsions in which tiny droplets of one component are dispersed in the other. Milk, face creams, and printer’s ink are examples of emulsions. Nanoemulsions with droplets that have diameters in the 20 to 200 nm range have recently attracted more attention.

Because of their small droplet size, they are transparent or translucent and are much slower to separate. In addition, there are potentially interesting new applications for them, either in pharmaceutical or cosmetic formulations that are easier to absorb, or as “nanoreactors” for the production of nanomaterials.

Emulsions are usually made by a “top-down” process.

Mixtures of water, oil, and surfactant are subjected to external forces, such as vigorous stirring, to break up larger drops into smaller ones. This becomes harder as the droplets get smaller, so this method has inherent limits. In contrast, solid nanoparticles are usually produced in a “bottom-up” process. This begins with a homogeneous solution. The dissolved molecules aggregate to make nanoparticles. This could also be a possible method to make nanodroplets. The problem is that water and oil would have to form a homogeneous solution to start from, but they are not miscible.

Shigeru Deguchi and Nao Ifuku at the Japan Agency for Marine-Earth Science and Technology in Yokosuka have now found a way around this with their new MAGIQ process. When water is heated under pressure it reaches its critical point at 374 °C and 22.1 MPa. At this point there is no longer a difference between the liquid and gas phases. The water no longer dissociates and no clusters of water molecules can form.

At this point, the properties of the water are like those of an oil—the researchers used dodecane in this case—and the two can be freely mixed together. When this homogeneous solution is quenched with cold water, a very rapid phase separation occurs, resulting in extremely small droplets in less than ten seconds. Addition of a detergent stabilizes the nanoemulsion. The researchers developed an apparatus in which they can carry out their “magic” technique in a constant flow process. The cooling temperature and speed, the ratio of water to dodecane in the mixture, and the concentration of detergent determine the—very uniform—size of the droplets.

About the Author
Dr. Shigeru Deguchi is a principal scientist at the Japan Agency for Marine-Earth Science and Technology and also an adjunct professor at Yokohama City University. His current research interests include soft materials in extreme conditions, white nanobiotechnology, and extremophiles. He is the recipient of the Osawa Award, Takagi Award, and Ichimura Prize in Technology.
Author: Shigeru Deguchi, Agency for Marine-Earth, Yokosuka (Japan), http://www.xbr.jp/yokohama-cu/deguchi/contact/index_e.html
Title: Bottom-Up Formation of Dodecane-in-Water Nanoemulsions from Hydrothermal Homogeneous Solutions

Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201301403

Shigeru Deguchi | Angewandte Chemie
Further information:
http://pressroom.angewandte.org
http://www.xbr.jp/yokohama-cu/deguchi/contact/index_e.html

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>