Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

More than a machine

21.11.2012
Ribosome regulates viral protein synthesis, revealing potential therapeutic target

Viruses can be elusive quarry. RNA viruses are particularly adept at defeating antiviral drugs because they are so inaccurate in making copies of themselves. With at least one error in every genome they copy, viral genomes are moving targets for antiviral drugs, creating resistant mutants as they multiply. In the best-known example of success against retroviruses, it takes multiple-drug cocktails to corner HIV and narrow its escape route.

Rather than target RNA viruses themselves, aiming at the host cells they invade could hold promise, but any such strategy would have to be harmless to the host. Now, a surprising discovery made in ribosomes may point the way to fighting fatal viral infections such as rabies.

Results were published online November 19 in Proceedings of the National Academy of Sciences.

The ribosome has traditionally been viewed as the cell's molecular machine, automatically chugging along, synthesizing proteins the cell needs to carry out the functions of life. But Amy Lee, a former graduate student in the program of virology, and Sean Whelan, HMS professor of microbiology and immunobiology, now say the ribosome appears to take a more active role, regulating the translation of specific proteins and ultimately how some viruses replicate.

The researchers were studying differences between how viruses and the host cells they infect carry out the process of translating messenger RNAs (mRNAs) into proteins. Focusing on protein components found on the surface of the ribosome, they discovered a protein that some viruses depend on to make other proteins, but that the vast majority of cellular mRNAs do not need.

Called rpL40, this ribosomal protein could represent a target for potential treatments; blocking it would disable certain viruses while leaving normal cells largely unaffected.

"Because certain viruses are very sensitive to the presence and absence of these ribosomal proteins, it might be a useful way for us to think about targeting ribosomes for therapeutic purposes from an antiviral standpoint," said Whelan. "This is a way to think about interfering with rabies virus infection. There are no therapeutics for rabies infection."

The team screened protein constituents of the ribosome to see which ones might be involved in specialized protein synthesis. Studying the vesicular stomatitis virus, a rhabdovirus in the same family as the rabies virus, they found that its mRNAs depended on rpL40 but only 7 percent of host-cellular mRNAs did. Some of the cellular mRNAs that depend upon rpL40 were stress response genes.

Experiments in yeast and human cells revealed that a class of viruses, which includes rabies and measles, depended on rpL40 for replication.

"This work reveals that the ribosome is not just an automatic molecular machine but instead also acts as a translational regulator," said first author Amy Lee, who is now a post-doctoral researcher at the University of California, Berkeley.

The concept of targeting cellular functions such as protein synthesis for antiviral therapies is being explored by a number of research groups, but there are no drugs based on this.

"We think the principle is bigger than just this single protein," Whelan said. "Viruses have an uncanny way of teaching us new biology all the time."

David Cameron | EurekAlert!
Further information:
http://www.hms.harvard.edu

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>