Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


A light sensor in the brain: German scientists develop off-switch for nerve cells


How do we learn? Why do we develop addictions? Is it possible to shut off an epileptic seizure?

Questions like these might now become easier to address: Scientists at the University Medical Center Hamburg-Eppendorf (UKE) and Humboldt University in Berlin have created a novel molecular switch that could be a valuable new tool for brain research.

The new findings of Prof. Thomas Oertner, Prof. Peter Hegemann and their coworkers have just been published in the journal “Science”.

“We inverted the ion selectivity and turned an excitatory channel into an inhibitory one”, explains Prof. Thomas Oertner, director of the Institute for Synaptic Physiology at the Center for Molecular Neurobiology Hamburg (ZMNH). “We were astounded to discover, that a single point mutation – changing a single letter of the genetic code – could be sufficient to completely invert the sign of current flowing through this channel. We also demonstrated that nerve cells can be selectively switched off with our new tool.”

... more about:
»DFG »Molecular »Neurobiology »Physiology »UKE »activity »proteins

This finding opens up new possibilities for basic research. Thomas Oertner and his team, for example, are planning to use this tool to investigate emotional aspects of learning. It is also conceivable that this channel could be used to dampen the activity of affected brain regions during epileptic seizures.

From algae to brain research – the emerging field of Optogenetics

Channelrhodopsins are proteins that are activated by light, allowing electrically charged ions to pass through biological membranes. Opening these channels changes the voltage across the membrane. In this way, nerve cells can be tuned on or shut off by light. Channelrhodopsins were discovered in unicellular green algae, which use them to swim towards light.

The biophysicist Prof. Peter Hegemann at Humboldt University in Berlin is credited with the discovery of channelrhodopsin, laying the foundation for the new field of optogenetics. With this latest discovery, optogeneticists have a completely new set of tools at their disposal: One of the new proteins, the chloride-conducting channelrhodopsin with slow kinetics or ‘slow ChloC’, opens its pore and shuts off neurons for several seconds after a short flash instead of needing constant light like the older inhibitory tools. “This means, we now need ten thousand times less light to block neuronal activity”, explains Thomas Oertner.

The research project at the UKE was supported by the German Research Foundation (DFG).

Wietek J, Wiegert JS, Adeishvili N, Schneider F, Watanabe H, Tsunoda SP, Vogt A, Elstner M, Oertner TG, Hegemann P (2014). Conversion of Channelrhodopsin into a light-gated chloride channel. Science, March 27, 2014.

Prof. Dr. Thomas G. Oertner
Institute for Synaptic Physiology
Center for Molecular Neurobiology Hamburg (ZMNH)
University Medical Center Hamburg-Eppendorf (UKE)
Falkenried 94
D-20251 Hamburg
Phone: +49 (40) 7410-58228

Christine Trowitzsch | idw - Informationsdienst Wissenschaft

Further reports about: DFG Molecular Neurobiology Physiology UKE activity proteins

More articles from Life Sciences:

nachricht Molecular trigger for Cerebral Cavernous Malformation identified
26.11.2015 | EMBO - excellence in life sciences

nachricht Peering into cell structures where neurodiseases emerge
26.11.2015 | University of Delaware

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate study finds evidence of global shift in the 1980s

Planet Earth experienced a global climate shift in the late 1980s on an unprecedented scale, fuelled by anthropogenic warming and a volcanic eruption, according to new research published this week.

Scientists say that a major step change, or ‘regime shift’, in the Earth’s biophysical systems, from the upper atmosphere to the depths of the ocean and from...

Im Focus: Innovative Photovoltaics – from the Lab to the Façade

Fraunhofer ISE Demonstrates New Cell and Module Technologies on its Outer Building Façade

The Fraunhofer Institute for Solar Energy Systems ISE has installed 70 photovoltaic modules on the outer façade of one of its lab buildings. The modules were...

Im Focus: Lactate for Brain Energy

Nerve cells cover their high energy demand with glucose and lactate. Scientists of the University of Zurich now provide new support for this. They show for the first time in the intact mouse brain evidence for an exchange of lactate between different brain cells. With this study they were able to confirm a 20-year old hypothesis.

In comparison to other organs, the human brain has the highest energy requirements. The supply of energy for nerve cells and the particular role of lactic acid...

Im Focus: Laser process simulation available as app for first time

In laser material processing, the simulation of processes has made great strides over the past few years. Today, the software can predict relatively well what will happen on the workpiece. Unfortunately, it is also highly complex and requires a lot of computing time. Thanks to clever simplification, experts from Fraunhofer ILT are now able to offer the first-ever simulation software that calculates processes in real time and also runs on tablet computers and smartphones. The fast software enables users to do without expensive experiments and to find optimum process parameters even more effectively.

Before now, the reliable simulation of laser processes was a job for experts. Armed with sophisticated software packages and after many hours on computer...

Im Focus: Quantum Simulation: A Better Understanding of Magnetism

Heidelberg physicists use ultracold atoms to imitate the behaviour of electrons in a solid

Researchers at Heidelberg University have devised a new way to study the phenomenon of magnetism. Using ultracold atoms at near absolute zero, they prepared a...

All Focus news of the innovation-report >>>



Event News

Fraunhofer’s Urban Futures Conference: 2 days in the city of the future

25.11.2015 | Event News

Gluten oder nicht Gluten? Überempfindlichkeit auf Weizen kann unterschiedliche Ursachen haben

17.11.2015 | Event News

Art Collection Deutsche Börse zeigt Ausstellung „Traces of Disorder“

21.10.2015 | Event News

Latest News

Using sphere packing models to explain the structure of forests

26.11.2015 | Ecology, The Environment and Conservation

Dimensionality transition in a newly created material

26.11.2015 | Materials Sciences

Revealing glacier flow with animated satellite images

26.11.2015 | Earth Sciences

More VideoLinks >>>