Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A light sensor in the brain: German scientists develop off-switch for nerve cells

28.03.2014

How do we learn? Why do we develop addictions? Is it possible to shut off an epileptic seizure?

Questions like these might now become easier to address: Scientists at the University Medical Center Hamburg-Eppendorf (UKE) and Humboldt University in Berlin have created a novel molecular switch that could be a valuable new tool for brain research.

The new findings of Prof. Thomas Oertner, Prof. Peter Hegemann and their coworkers have just been published in the journal “Science”.

“We inverted the ion selectivity and turned an excitatory channel into an inhibitory one”, explains Prof. Thomas Oertner, director of the Institute for Synaptic Physiology at the Center for Molecular Neurobiology Hamburg (ZMNH). “We were astounded to discover, that a single point mutation – changing a single letter of the genetic code – could be sufficient to completely invert the sign of current flowing through this channel. We also demonstrated that nerve cells can be selectively switched off with our new tool.”

... more about:
»DFG »Molecular »Neurobiology »Physiology »UKE »activity »proteins

This finding opens up new possibilities for basic research. Thomas Oertner and his team, for example, are planning to use this tool to investigate emotional aspects of learning. It is also conceivable that this channel could be used to dampen the activity of affected brain regions during epileptic seizures.

From algae to brain research – the emerging field of Optogenetics

Channelrhodopsins are proteins that are activated by light, allowing electrically charged ions to pass through biological membranes. Opening these channels changes the voltage across the membrane. In this way, nerve cells can be tuned on or shut off by light. Channelrhodopsins were discovered in unicellular green algae, which use them to swim towards light.

The biophysicist Prof. Peter Hegemann at Humboldt University in Berlin is credited with the discovery of channelrhodopsin, laying the foundation for the new field of optogenetics. With this latest discovery, optogeneticists have a completely new set of tools at their disposal: One of the new proteins, the chloride-conducting channelrhodopsin with slow kinetics or ‘slow ChloC’, opens its pore and shuts off neurons for several seconds after a short flash instead of needing constant light like the older inhibitory tools. “This means, we now need ten thousand times less light to block neuronal activity”, explains Thomas Oertner.

The research project at the UKE was supported by the German Research Foundation (DFG).

Literature:
Wietek J, Wiegert JS, Adeishvili N, Schneider F, Watanabe H, Tsunoda SP, Vogt A, Elstner M, Oertner TG, Hegemann P (2014). Conversion of Channelrhodopsin into a light-gated chloride channel. Science, March 27, 2014. http://www.sciencexpress.org

Contact:
Prof. Dr. Thomas G. Oertner
Institute for Synaptic Physiology
Center for Molecular Neurobiology Hamburg (ZMNH)
University Medical Center Hamburg-Eppendorf (UKE)
Falkenried 94
D-20251 Hamburg
Germany
Phone: +49 (40) 7410-58228
E-mail: thomas.oertner@zmnh.uni-hamburg.de

Christine Trowitzsch | idw - Informationsdienst Wissenschaft

Further reports about: DFG Molecular Neurobiology Physiology UKE activity proteins

More articles from Life Sciences:

nachricht Antimicrobial substances identified in Komodo dragon blood
23.02.2017 | American Chemical Society

nachricht New Mechanisms of Gene Inactivation may prevent Aging and Cancer
23.02.2017 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>