Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Two-Legged Molecule

25.04.2012
A small molecule moves independently along a track

Within each of the cells in our bodies, and between individual cells, there are permanent transport processes occurring over distances ranging from a few nanometers to several millimeters.

One of these cellular “cargo carriers” works by means of molecular motors that “walk” along the filaments of the cellular skeleton (cytoskeleton). British researchers have used these as inspiration to develop a molecular “track”, along which a small molecule can move back and forth like a courier. Their system is described in the journal Angewandte Chemie.

David A. Leigh and a team at the University of Edinburgh (UK) made their track from an oligoethylenimine. The filament contains amino groups that act as “stepping-stones” for the molecular “walker”. The walker is a small molecule (á-methylene-4-nitrostyrene). It resembles a stick figure that has an aromatic six-membered ring of carbon atoms for its torso, a nitro group for its head, and two short hydrocarbon legs.

The molecule is initially bound to the first stepping-stone of the track by one leg. The molecular walker’s movement begins with a ring-closing rearrangement (an intramolecular Michael reaction). This causes the second leg to bind to the neighboring stepping-stone. A second, ring-opening rearrangement reaction (a retro-Michael reaction) then causes the first leg to detach from its stepping-stone. This allows the molecular walker to move along the track step by step.

There is, however, a catch: All of these rearrangement reactions are equilibrium reactions.

If the stepping-stones are chemically equivalent, the tiny walker swings back and forth, lifts one leg and puts it down again, moves forward one step then back again; its movement has no directionality. However, it manages on average an amazingly high 530 “steps” before completely coming off the track. That is significantly more than natural systems like the kinesin motor proteins.

The miniature walker can even carry out a task: The researchers attached an anthracene group to the end of a track with five stepping-stones. As long as the walker stays at the beginning of the track, the anthracene fluoresces. However, if the walker reaches the anthracene end of the track, an electronic interaction between the walker and the anthracene “switches off” the fluorescence. The researchers found that the intensity of the fluorescence slowly sinks by about half. The final intensity is reached after about 6.5 hours, at which point there is an equilibrium between all possible positions of the walker.

The team’s next goal is to develop a walker that uses a “fuel” to march in a predetermined direction to transport cargoes over longer, branched tracks.

About the Author
Professor David Leigh is the Forbes Chair of Organic Chemistry at the University of Edinburgh. He is one of the international leaders in the field of artificial molecular motors and machines. He is a Fellow of the Royal Society (the UK's National Academy of Sciences) and has received the 2007 international Feynman Award for Nanotechnology, and many other distinctions. His group is moving to the University of Manchester in autumn 2012.
Author: David A. Leigh, University of Edinburgh (UK), http://www.catenane.net/
Title: A Small Molecule that Walks Non-Directionally Along a Track Without External Intervention

Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201200822

David A. Leigh | Angewandte Chemie
Further information:
http://www.catenane.net/
http://pressroom.angewandte.org

More articles from Life Sciences:

nachricht The dense vessel network regulates formation of thrombocytes in the bone marrow
25.07.2017 | Rudolf-Virchow-Zentrum für Experimentelle Biomedizin der Universität Würzburg

nachricht Fungi that evolved to eat wood offer new biomass conversion tool
25.07.2017 | University of Massachusetts at Amherst

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA mission surfs through waves in space to understand space weather

25.07.2017 | Physics and Astronomy

Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds

25.07.2017 | Earth Sciences

The dense vessel network regulates formation of thrombocytes in the bone marrow

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>