Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Larger Pocket

12.08.2014

 

Reprogramed nonribosomal peptide synthetase incorporates amino acids with reactive sites for “click” chemistry

A single targeted mutation is enough to alter a natural peptide system so that it also incorporates non-natural amino acids into peptides, report Swiss scientists in the journal Angewandte Chemie.

The mutation increases the size of the binding cavity in one domain of the system, which changes the substrate specificity. The researchers are thus able to incorporate amino acids with a specific reactive group that can later be used to easily modify the peptide.

In the search for new pharmaceuticals through the use of combinatorial chemistry and screening processes, researchers are often faced with the task of modifying and varying natural substances—sometimes by adding further molecular components, for example.

Highly specific coupling with molecular markers is particularly important because it allows scientists to monitor the distribution of natural substances in cells and tissues. Coupling reactions that are almost as snapping components together can be carried out by a technique known as “click chemistry”. This method encompasses broadly applicable reactions like those between alkynes and azides, which deliver high yields.

For this technique, the natural substance must first be equipped with such an alkyne or azide group. One way to achieve this would be through the incorporation of amino acids with alkyne or azide side chains into proteins through alteration of their biosynthesis.

However, many interesting natural substances, such as the gramicidin antibiotics, are not formed by way of the classical pathways of protein biosynthesis through the reading of genes and the assembly of amino acids in the ribosomes. Instead, they are made by nonribosomal peptide synthetases, very large multi-enzyme complexes whose individual modules hang together like pearls on a necklace.

These activate the amino acid building blocks and incorporate them into the growing peptide chain. The number, type, and ordering of the individual modules determine the length and composition of the resulting—usually short-chained—peptide. In addition to the usual amino acids, it is also possible to incorporate other, sometimes unusual, individual building blocks, which allows for the formation of an astonishingly large variety of peptides.

Researchers working with Donald Hilvert at the ETH in Zurich exchanged an individual amino acid in one module of the nonribosomal production apparatus for the antibiotic gramicidin S through a mutation. This altered an area known as an A domain, which specifically recognizes and activates the natural amino acid phenylalanine.

The mutation causes the binding cavity to be roomier, so that non-natural amino acids that contain an azide or alkyne group can be activated and incorporated into the peptide chain in place of phenylalanine. The catalytic activity of the overall system is not affected by this change in selectivity.

Because many different nonribosomal synthesis systems contain such A domains, this new method is potentially a general approach for equipping important natural substances with a reactive site for highly specific covalent modification.

About the Author

Dr. Donald Hilvert is Professor of Chemistry at the ETH Zürich. His research group is investigating how enzymes work and evolve and applying this knowledge to the design of new protein-based catalysts. These efforts have been recognized by a number of awards, including the Pfizer Award in Enzyme Chemistry and the Emil Thomas Kaiser Award from the Protein Society.

Author: Donald Hilvert, ETH Zürich (Switzerland), http://www.protein.ethz.ch

Title: Reprogramming Nonribosomal Peptide Synthetases for "Clickable" Amino Acids

Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201405281

Donald Hilvert | Angewandte Chemie - Wiley
Further information:
http://pressroom.angewandte.org

Further reports about: ETH Pocket acid acids alkyne amino phenylalanine reactions reactive substances technique

More articles from Life Sciences:

nachricht The herbivore dilemma: How corn plants fights off simultaneous attacks
09.02.2016 | Boyce Thompson Institute for Plant Research

nachricht Shedding Light on Bacteria
09.02.2016 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New study: How stable is the West Antarctic Ice Sheet?

Exceeding critical temperature limits in the Southern Ocean may cause the collapse of ice sheets and a sharp rise in sea levels

A future warming of the Southern Ocean caused by rising greenhouse gas concentrations in the atmosphere may severely disrupt the stability of the West...

Im Focus: Superconductivity: footballs with no resistance

Indications of light-induced lossless electricity transmission in fullerenes contribute to the search for superconducting materials for practical applications.

Superconductors have long been confined to niche applications, due to the fact that the highest temperature at which even the best of these materials becomes...

Im Focus: Wbp2 is a novel deafness gene

Researchers at King’s College London and the Wellcome Trust Sanger Institute in the United Kingdom have for the first time demonstrated a direct link between the Wbp2 gene and progressive hearing loss. The scientists report that the loss of Wbp2 expression leads to progressive high-frequency hearing loss in mouse as well as in two clinical cases of children with deafness with no other obvious features. The results are published in EMBO Molecular Medicine.

The scientists have shown that hearing impairment is linked to hormonal signalling rather than to hair cell degeneration. Wbp2 is known as a transcriptional...

Im Focus: From allergens to anodes: Pollen derived battery electrodes

Pollens, the bane of allergy sufferers, could represent a boon for battery makers: Recent research has suggested their potential use as anodes in lithium-ion batteries.

"Our findings have demonstrated that renewable pollens could produce carbon architectures for anode applications in energy storage devices," said Vilas Pol, an...

Im Focus: Automated driving: Steering without limits

OmniSteer project to increase automobiles’ urban maneuverability begins with a € 3.4 million budget

Automobiles increase the mobility of their users. However, their maneuverability is pushed to the limit by cramped inner city conditions. Those who need to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AKL’16: Experience Laser Technology Live in Europe´s Largest Laser Application Center!

02.02.2016 | Event News

From intelligent knee braces to anti-theft backpacks

26.01.2016 | Event News

DATE 2016 Highlighting Automotive and Secure Systems

26.01.2016 | Event News

 
Latest News

Body temperature triggers newly developed polymer to change shape

09.02.2016 | Materials Sciences

Using renewable energy in heating networks more efficiently

09.02.2016 | Power and Electrical Engineering

New study: How stable is the West Antarctic Ice Sheet?

09.02.2016 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>