Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

What is a laboratory mouse? Jackson, UNC researchers reveal the details

30.05.2011
Mice and humans share about 95 percent of their genes, and mice are recognized around the world as the leading experimental model for studying human biology and disease. But, says Jackson Laboratory Professor Gary Churchill, Ph.D., researchers can learn even more "now that we really know what a laboratory mouse is, genetically speaking."

Churchill and Fernando Pardo-Manuel de Villena, Ph.D., of the University of North Carolina, Chapel Hill, leading an international research team, created a genome-wide, high-resolution map of most of the inbred mouse strains used today. Their conclusion, published in Nature Genetics: Most of the mice in use today represent only limited genetic diversity, which could be significantly expanded with the addition of more wild mouse populations.

The current array of laboratory mouse strains is the result of more than 100 years of selective breeding. In the early 20th century, America's first mammalian geneticists, including Jackson Laboratory founder Clarence Cook Little, sought to understand the genetic processes that lead to cancer and other diseases. Mice were the natural experimental choice as they breed quickly and prolifically and are small and easy to keep.

Lacking the tools of molecular genetics, those early scientists started by tracking the inheritance of physical traits such as coat color. A valuable source of diverse-looking mouse populations were breeders of "fancy mice," a popular hobby in Victorian and Edwardian England and America as well as for centuries in Asia.

In their paper, Churchill and Pardo-Manuel de Villena report that "classical laboratory strains are derived from a few fancy mice with limited haplotype diversity." In contrast, strains that were derived from wild-caught mice "represent a deep reservoir of genetic diversity," they write.

The team created an online tool, the Mouse Phylogeny Viewer, for the research community to access complete genomic data on 162 mouse strains. "The viewer provides scientists with a visual tool where they can actually go and look at the genome of the mouse strains they are using or considering, compare the differences and similarities between strains and select the ones most likely to provide the basis for experimental results that can be more effectively extrapolated to the diverse human population," said Pardo-Manuel de Villena.

"As scientists use this resource to find ways to prevent and treat the genetic changes that cause cancer, heart disease, and a host of other ailments, the diversity of our lab experiments should be much easier to translate to humans," he noted.

Churchill and Pardo-Manuel de Villena have been working for almost a decade with collaborators around the world to expand the genetic diversity of the laboratory mouse. In 2004 they launched the Collaborative Cross, a project to interbreed eight different strains--five of the classic inbred strains and three wild-derived strains. In 2009 Churchill's lab started the Diversity Outbred mouse population with breeding stock selected from the Collaborative Cross project.

The research team estimates that the standard laboratory mouse strains carry about 12 million single nucleotide polymorphisms (SNPs), single-letter variations in the A, C, G or T bases of DNA. The Collaborative Cross mice deliver a whopping 45 million SNPs, as much as four times the genetic variation in the human population. "All these variants give us a lot more handles into understanding the genome," Churchill says.

"This work creates a remarkable foundation for understanding the genetics of the laboratory mouse, a critical model for studying human health," said James Anderson, Ph.D., who oversees bioinformatics grants at the National Institutes of Health. "Knowledge of the ancestry of the many strains of this invaluable model vertebrate will not only inform future experimentation but will allow a retrospective analysis of the huge amounts of data already collected."

Other team members include Hyuna Yang, Ph.D., from The Jackson Laboratory; Leonard McMillan, Ph.D., two graduate students Jeremy Wang and Catherine Welsh from the UNC-Chapel Hill Department of Computer Science; Timothy Bell, Ryan Buus and graduate student John Didion from the UNC-Chapel Hill Department of Genetics, UNC Lineberger and the Carolina Center for Genome Sciences; Francois Bonhomme, Ph.D., and Pierre Boursot, Ph.D., from the Université Montpellier (France); Alex Yu, Ph.D., from the National Taiwan University; Michael Nachman, Ph.D., from the University of Arizona; Jaroslav Pialek, Ph.D., from the Academy of Sciences of the Czech Republic, and Priscilla Tucker, Ph.D., from the University of Michigan.

The research was supported by the National Institute of General Medical Sciences (part of the National Institutes of Health), and several additional National Institutes of Health grants, a Czech Science Foundation grant and a University of North Carolina Bioinformatics and Computational Biology training grant.

Yang et al.: Subspecific origin and haplotype diversity in the laboratory mouse. Nature Genetics, advance online publication Sunday, May 29, 2011, http://dx.doi.org/10.1038/847.

Joyce Peterson | EurekAlert!
Further information:
http://www.jax.org

More articles from Life Sciences:

nachricht Programming cells with computer-like logic
27.07.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht Identified the component that allows a lethal bacteria to spread resistance to antibiotics
27.07.2017 | Institute for Research in Biomedicine (IRB Barcelona)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Programming cells with computer-like logic

27.07.2017 | Life Sciences

Identified the component that allows a lethal bacteria to spread resistance to antibiotics

27.07.2017 | Life Sciences

Malaria Already Endemic in the Mediterranean by the Roman Period

27.07.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>