Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Lab Rat -- Created in the Lab

14.04.2010
TAU is bioengineering tissues as an alternative to animal testing

It's illegal for health products with medical formulations to be accepted by the U.S. Food and Drug Administration without tests on animals — a situation that has serious ethical and moral implications. New research in the field of tissue engineering by Prof. Amit Gefen of Tel Aviv University's Faculty of Engineering holds a promise that far fewer lab animals will be needed for the necessary experimental trials.

Dr. Gefen's research into fat cells, published in a recent issue of Tissue Engineering , has led him to conclude that the necessary tissue can be produced from fat, skin, bone and muscle cells. His breakthrough study could have hundreds of applications in the pharmaceutical and medical world.

"Drugs make our lives better, and basic science is needed to push new drugs through clinical trials. But there is no doubt that an untold number of animals are sacrificed in the laboratory setting — both in basic research and in applied conditions when testing particular molecules," says Prof. Gefen, who heads TAU's Teaching Laboratory for Cell and Tissue Engineering. As a medical researcher himself, he was dependent on animal trials for testing new hypotheses he developed for living systems — until recently.

A more efficient road to scientific research

Bridging the worlds of biology and engineering, Prof. Gefen is now using adult rat stem cells — cells that can be stimulated to create skin, bone, fat and muscle tissue from an animal in a laboratory setting. In his own work on studying the mechanical properties of pressure ulcers, many tissue replications were needed. His new approach no longer requires the sacrifice of large numbers of animals. When an experiment is over, not one animal life has been lost.

The use of engineered tissues, says Prof. Gefen, may also be more scientifically efficient than using those from a living source. "The model we've created offers a very reliable method for researchers asking questions about basic science, and those investigating new drugs. We can injure tissue in a very controlled environment and grow muscle tissue without blood vessels, thereby neutralizing certain variables that often cloud what's happening in an experiment."

Saving lives and improving research at the same time

Though Prof. Gefen's method may not completely eliminate the need for animal testing, as few as 5% of the animals used today will need to be sacrificed in future tests, he predicts.

"It's a matter of proportion. Our tools spare an enormous number of lives," Prof. Gefen says. He is currently bringing together a number of discrete research directions from the separate fields of mechanics, tissue engineering and biology. He is also developing a new tool for researchers to investigate fat accumulation in cells (an important question for diabetes researchers) and weight loss drugs. Among his devices is one that can tell doctors how much mechanical stress is being placed on a person's foot, buttocks or other soft tissues. Another measures how much sensation is left in a diabetic limb. For all these approaches, Prof. Gefen has adopted tissue engineering methods to use fewer animals in his trials.

"We are now able to build a number of 'simplified' living tissues quite readily, and we're able to keep them 'alive,'" Prof. Gefen says. "They're genetically similar to the biological tissue of the animal, so we can factor out irrelevant physiological elements such as bleeding and pain response in an experiment. The fact that this tissue is genetically identical and the environmental factors are so well-controlled means that we can obtain far more experimental reproducibility than with experiments done on live animals."

In the future, Prof. Gefen hopes that similar models can be based on live human tissue, but that could be a number of years down the road.

George Hunka | EurekAlert!
Further information:
http://www.aftau.org

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>