Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A key to personalised medicine

26.09.2013
ERC Advanced Grant for the chemist Professor Dr. Andreas Marx from Konstanz for research on gene modification

The chemist Professor Dr. Andreas Marx from Konstanz was awarded the renowned ERC Advanced Grant by the European Research Council (ERC) for developing new diagnostic procedures on the basis of DNA methylation.

Similar to a diabetes quick test the new DNA methylation diagnostic is a universal and simplified procedure for an early diagnosis of diseases, among other things cancer. Moreover, the procedure provides the opportunity to tailor therapies more exactly to the patient – and thus opens the door to personalised disease control, that is exactly matched to the organism of the patient and therefore shows fewer side effects.

The five-year research project at the University of Konstanz is being supported by the European Research Council with approximately 2.5 million euros.

DNA methylation is considered as the most important epigenetic modification in human beings. The degree of methylation of cells is an important indicator of diseases and can be used for the early recognition of cancer, among other things. Present methods of testing methylation, however, have not only been work-intensive and time-consuming, but also bear a high risk of sample contamination. These test procedures have been too complex and too expensive for a broad medical application so far.

"Our approach of combining chemistry with biochemistry and biotechnology significantly simplifies these methods, thus enabling every diagnostic laboratory to run the test with established devices", comments Andreas Marx on the background of his research project ‘EvoEPIGEN’. "If we are successful, a test will no longer take some 16 hours, as is currently the case, but only two hours. This will safe nearly two days of work and the costs and risks will be substantially reduced: the test becomes suitable for large-scale use", Marx explains the importance of the simplified test procedure.

Moreover, with a simplified test the course of a therapy could be better assessed by observing the methylation patterns of DNA. In this way the therapy could be tailored more exactly to the patient and side effects of a treatment could be reduced. Thus a quick test might be an important step towards personalised medicine.

"The aim of our project is not only to promote biochemistry and its application in the medical field, but also to enhance the understanding of the effect of DNA methylation", explains Andreas Marx. The chemist and his research group intend to advance basic research in the field of epigenetics in order to tap new medical potential. "My thanks go to the European Research Council for the trust placed in me and in particular to all parties involved, as they played an important part in the preparatory work and made the project possible in the first place", Andreas Marx acknowledges.

Note to editors:
You can download a photo of Prof. Dr. Andreas Marx here:
http://www.pi.uni-konstanz.de/2013/marx.jpg
Contact:
University of Konstanz
Communications and Marketing
Phone: 07531 / 88-3603
Email: kum@uni-konstanz.de
Prof. Dr. Andreas Marx
University of Konstanz
Department of Chemistry
Organic chemistry / cellular chemistry
Universitätsstraße 10
78464 Konstanz
Phone: 07531 / 88-5139
Email: Andreas.Marx@uni-konstanz.de

Julia Wandt | idw
Further information:
http://www.uni-konstanz.de

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>