Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A key to personalised medicine

26.09.2013
ERC Advanced Grant for the chemist Professor Dr. Andreas Marx from Konstanz for research on gene modification

The chemist Professor Dr. Andreas Marx from Konstanz was awarded the renowned ERC Advanced Grant by the European Research Council (ERC) for developing new diagnostic procedures on the basis of DNA methylation.

Similar to a diabetes quick test the new DNA methylation diagnostic is a universal and simplified procedure for an early diagnosis of diseases, among other things cancer. Moreover, the procedure provides the opportunity to tailor therapies more exactly to the patient – and thus opens the door to personalised disease control, that is exactly matched to the organism of the patient and therefore shows fewer side effects.

The five-year research project at the University of Konstanz is being supported by the European Research Council with approximately 2.5 million euros.

DNA methylation is considered as the most important epigenetic modification in human beings. The degree of methylation of cells is an important indicator of diseases and can be used for the early recognition of cancer, among other things. Present methods of testing methylation, however, have not only been work-intensive and time-consuming, but also bear a high risk of sample contamination. These test procedures have been too complex and too expensive for a broad medical application so far.

"Our approach of combining chemistry with biochemistry and biotechnology significantly simplifies these methods, thus enabling every diagnostic laboratory to run the test with established devices", comments Andreas Marx on the background of his research project ‘EvoEPIGEN’. "If we are successful, a test will no longer take some 16 hours, as is currently the case, but only two hours. This will safe nearly two days of work and the costs and risks will be substantially reduced: the test becomes suitable for large-scale use", Marx explains the importance of the simplified test procedure.

Moreover, with a simplified test the course of a therapy could be better assessed by observing the methylation patterns of DNA. In this way the therapy could be tailored more exactly to the patient and side effects of a treatment could be reduced. Thus a quick test might be an important step towards personalised medicine.

"The aim of our project is not only to promote biochemistry and its application in the medical field, but also to enhance the understanding of the effect of DNA methylation", explains Andreas Marx. The chemist and his research group intend to advance basic research in the field of epigenetics in order to tap new medical potential. "My thanks go to the European Research Council for the trust placed in me and in particular to all parties involved, as they played an important part in the preparatory work and made the project possible in the first place", Andreas Marx acknowledges.

Note to editors:
You can download a photo of Prof. Dr. Andreas Marx here:
http://www.pi.uni-konstanz.de/2013/marx.jpg
Contact:
University of Konstanz
Communications and Marketing
Phone: 07531 / 88-3603
Email: kum@uni-konstanz.de
Prof. Dr. Andreas Marx
University of Konstanz
Department of Chemistry
Organic chemistry / cellular chemistry
Universitätsstraße 10
78464 Konstanz
Phone: 07531 / 88-5139
Email: Andreas.Marx@uni-konstanz.de

Julia Wandt | idw
Further information:
http://www.uni-konstanz.de

More articles from Life Sciences:

nachricht Research team creates new possibilities for medicine and materials sciences
22.01.2018 | Humboldt-Universität zu Berlin

nachricht Saarland University bioinformaticians compute gene sequences inherited from each parent
22.01.2018 | Universität des Saarlandes

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Thanks for the memory: NIST takes a deep look at memristors

22.01.2018 | Materials Sciences

Radioactivity from oil and gas wastewater persists in Pennsylvania stream sediments

22.01.2018 | Earth Sciences

Saarland University bioinformaticians compute gene sequences inherited from each parent

22.01.2018 | Life Sciences

VideoLinks Wissenschaft & Forschung
Overview of more VideoLinks >>>