Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


A Key Gene for Brain Development

Neurobiologists at the Research institute of Molecular Pathology (IMP) in Vienna have discovered one of the key genes required to make a brain. Mutations in this gene, called TUBB5, cause neurodevelopmental disease in children.

About one in ten thousand babies is born with an abnormally small head. The cause for this disorder – which is known as microcephaly – is a defect in the develoment of the embryonic brain. Children with microcephaly are severely retarded and their life expectancy is low. Certain cases of autism and schizophrenia are also associated with the dysregulation of brain size.

Comparison of the size of a normal brain (left) and a microcephalic brain (right). Drawing based on coronal sections of human brains.
Copyright: IMP

Genetically altered mouse embryo at the age of 12 days. Cells that produce the protein TUBB5 light up in green (most obviously in the developing brain).
Copyright: IMP

The causes underlying impaired brain development can be environmental stress (such as alcohol abuse or radiation) or viral infections (such as rubella) during pregnancy. In many cases, however, a mutant gene causes the problem.

David Keays, a group leader at the IMP, has now found a new gene which is responsible for Microcephaly. Together with his PhD-student Martin Breuss, he was able to identify TUBB5 as the culprit. The gene is responsible for making tubulins, the building blocks of the cell’s internal skeleton. Whenever a cell moves or divides, it relies on guidance from this internal structure, acting like a scaffold.

The IMP-researchers, together with collaborators at Monash University (Victoria, Australia), were able to interfere with the function of the TUBB5 in the brains of unborn mice. This led to massive disturbances in the stem cell population and impaired the migration of nerve cells. Both, the generation of large numbers of neurons from the stem cell reservoir and their correct positioning in the cortex, are essential for the development of the mammalian brain.

To determine whether the findings are also relevant in humans, David Keays collaborates with clinicians from the Paris-Sorbonne University. The French team led by Jamel Chelly, examined 120 patients with pathological brain structures and severe disabilities. Three of the children were found to have a mutated TUBB5-gene.

This information will prove vital to doctors treating children with brain disease. It will allow the development of new genetic tests which will form the basis of genetic counseling, helping parents plan for the future. By understanding how different genes cause brain disorders, it is hoped that one day scientists will be able to create new drugs and therapies to treat them.

The new findings by the IMP-researchers are published in the current issue of the journal “Cell Reports”. For David Keays, understanding the function of TUBB5 is the key to understanding brain development. “Our project shows how research in the lab can help improve lives in the clinic”, he adds.

The paper "Mutations in the â-tubulin Gene TUBB5 Cause Microcephaly with Structural Brain Abnormalities" is published on December 13, 2012, in the online-Journal Cell Reports.

About the IMP
The Research Institute of Molecular Pathology (IMP) in Vienna is a basic biomedical research institute largely sponsored by Boehringer Ingelheim. With over 200 scientists from 30 nations, the IMP is committed to scientific discovery of fundamental molecular and cellular mechanisms underlying complex biological phenomena. Research areas include cell and molecular biology, neurobiology, disease mechanisms and computational biology. The IMP is a founding member of the Campus Vienna Biocenter.
Dr. Heidemarie Hurtl
IMP Communications
Tel.: (+43 1) 79730 3625
Mobile: (+43 1) 664 8247910
Scientific Contact
David Keays, PhD

Dr. Heidemarie Hurtl | idw
Further information:

More articles from Life Sciences:

nachricht When fat cells change their colour
28.10.2016 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Aquaculture: Clear Water Thanks to Cork
28.10.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>