Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new interplay between the reproductive germline and the body

26.08.2013
Dr. Björn Schumacher’s team at the University of Cologne uncovers a new type of communication through which germ cells (the precursors to sperm and eggs) instruct the body to increase its resistance to various types of stress.

When the DNA of germ cells is damaged, the production of offspring must be delayed until the genetic material is repaired. By studying the nematode worm model Caenorhabditis elegans, the researchers found that to gain more time to repair their DNA, germ cells activate the innate immune system that then triggers enhanced endurance of other body tissues.

Now, for the first time, it is clear how germ cells can influence the reproductive lifespan of the body when they require more time to guarantee accurate passage of the genetic material to the next generation. Moreover, the new insights might lead to a better understanding how the immune system mediates systemic responses to DNA damage, a process that plays an important role in the natural defense against cancer.

From generation to generation, the genetic material needs to be transmitted through the germline, where germ cells produce sperm and egg cells. The maintenance of the genome in germ cells is thus a prerequisite for the survival of the species. While germ cells continue their lives endlessly as they carry the genetic information to future generations, the somatic tissues (all non-reproductive cells of the body) function as their ever-ageing carriers. But how does the whole organism respond when the genome of germ cells is damaged thus preventing them from generating offspring?

In the current issue of Nature, Björn Schumacher’s group at the Excellence Cluster for Ageing Research at the University of Cologne reports a novel type of interplay between the germline and the somatic tissues. Strikingly, they found that the immune system alerts the body when germ cells are damaged. The scientists revealed that when the genome of germ cells is damaged, somatic tissues respond by elevated resistance to various stress factors. The increased stress resistance makes the somatic tissues more durable and enables the body to survive the stress longer, thus “buying” time to postpone progeny production until the germ cells have repaired their DNA.

The Cologne biologists identified the novel influence of the germline on somatic tissues by studying the simple nematode worm Caenorhabditis elegans. The worm is widely used as important model system because many biological processes that are relevant to human health are also present. Germ cells halt their activity when their genomes are damaged, thus halting offspring production. Schumacher’s team observed that the damaged germ cells produce innate immune factors that are normally secreted in the intestine when the worms have ingested pathogens. Indeed, the innate immune response to DNA damage in the germ cells made the worms more resistant to pathogen infection. In addition, the somatic tissues became highly durable even under environmental stress conditions. Furthermore, in the somatic tissues, the innate immune response led to elevated quality control of proteins, which contributed to this increased stress resistance. The scientists named this new phenomenon “germline DNA damage-induced systemic stress resistance” (GDISR).

The activation of innate immune responses to DNA damage is relevant for fighting cancer cells in humans. DNA damage in somatic human cells can lead to mutations that can transform cells into cancer cells. The human immune system reacts to the damaged cells in the body by eliminating them; however, some cancer cells acquire mutations that allow them to disguise themselves from the immune system and continue to grow. The new results from the Schumacher group provide a basis for the investigation of innate immune responses to DNA damage in a very simple biological system. These mechanisms might then enable the development of therapies that activate the immune system to effectively eliminate cancer cells.

It will be particularly interesting to investigate how the human body responds when the germ cells’ genomes are compromised. The foundation is now laid for better understanding how the human body responds to DNA damage in germ cells and how the reproductive capacity might be prolonged when germ cells require time to repair their genome.

Christoph Wanko | idw
Further information:
http://cecad.uni-koeln.de/

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>