Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new interplay between the reproductive germline and the body

26.08.2013
Dr. Björn Schumacher’s team at the University of Cologne uncovers a new type of communication through which germ cells (the precursors to sperm and eggs) instruct the body to increase its resistance to various types of stress.

When the DNA of germ cells is damaged, the production of offspring must be delayed until the genetic material is repaired. By studying the nematode worm model Caenorhabditis elegans, the researchers found that to gain more time to repair their DNA, germ cells activate the innate immune system that then triggers enhanced endurance of other body tissues.

Now, for the first time, it is clear how germ cells can influence the reproductive lifespan of the body when they require more time to guarantee accurate passage of the genetic material to the next generation. Moreover, the new insights might lead to a better understanding how the immune system mediates systemic responses to DNA damage, a process that plays an important role in the natural defense against cancer.

From generation to generation, the genetic material needs to be transmitted through the germline, where germ cells produce sperm and egg cells. The maintenance of the genome in germ cells is thus a prerequisite for the survival of the species. While germ cells continue their lives endlessly as they carry the genetic information to future generations, the somatic tissues (all non-reproductive cells of the body) function as their ever-ageing carriers. But how does the whole organism respond when the genome of germ cells is damaged thus preventing them from generating offspring?

In the current issue of Nature, Björn Schumacher’s group at the Excellence Cluster for Ageing Research at the University of Cologne reports a novel type of interplay between the germline and the somatic tissues. Strikingly, they found that the immune system alerts the body when germ cells are damaged. The scientists revealed that when the genome of germ cells is damaged, somatic tissues respond by elevated resistance to various stress factors. The increased stress resistance makes the somatic tissues more durable and enables the body to survive the stress longer, thus “buying” time to postpone progeny production until the germ cells have repaired their DNA.

The Cologne biologists identified the novel influence of the germline on somatic tissues by studying the simple nematode worm Caenorhabditis elegans. The worm is widely used as important model system because many biological processes that are relevant to human health are also present. Germ cells halt their activity when their genomes are damaged, thus halting offspring production. Schumacher’s team observed that the damaged germ cells produce innate immune factors that are normally secreted in the intestine when the worms have ingested pathogens. Indeed, the innate immune response to DNA damage in the germ cells made the worms more resistant to pathogen infection. In addition, the somatic tissues became highly durable even under environmental stress conditions. Furthermore, in the somatic tissues, the innate immune response led to elevated quality control of proteins, which contributed to this increased stress resistance. The scientists named this new phenomenon “germline DNA damage-induced systemic stress resistance” (GDISR).

The activation of innate immune responses to DNA damage is relevant for fighting cancer cells in humans. DNA damage in somatic human cells can lead to mutations that can transform cells into cancer cells. The human immune system reacts to the damaged cells in the body by eliminating them; however, some cancer cells acquire mutations that allow them to disguise themselves from the immune system and continue to grow. The new results from the Schumacher group provide a basis for the investigation of innate immune responses to DNA damage in a very simple biological system. These mechanisms might then enable the development of therapies that activate the immune system to effectively eliminate cancer cells.

It will be particularly interesting to investigate how the human body responds when the germ cells’ genomes are compromised. The foundation is now laid for better understanding how the human body responds to DNA damage in germ cells and how the reproductive capacity might be prolonged when germ cells require time to repair their genome.

Christoph Wanko | idw
Further information:
http://cecad.uni-koeln.de/

More articles from Life Sciences:

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

nachricht Chlamydia: How bacteria take over control
28.03.2017 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers create artificial materials atom-by-atom

28.03.2017 | Physics and Astronomy

Researchers show p300 protein may suppress leukemia in MDS patients

28.03.2017 | Health and Medicine

Asian dust providing key nutrients for California's giant sequoias

28.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>