Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new interplay between the reproductive germline and the body

26.08.2013
Dr. Björn Schumacher’s team at the University of Cologne uncovers a new type of communication through which germ cells (the precursors to sperm and eggs) instruct the body to increase its resistance to various types of stress.

When the DNA of germ cells is damaged, the production of offspring must be delayed until the genetic material is repaired. By studying the nematode worm model Caenorhabditis elegans, the researchers found that to gain more time to repair their DNA, germ cells activate the innate immune system that then triggers enhanced endurance of other body tissues.

Now, for the first time, it is clear how germ cells can influence the reproductive lifespan of the body when they require more time to guarantee accurate passage of the genetic material to the next generation. Moreover, the new insights might lead to a better understanding how the immune system mediates systemic responses to DNA damage, a process that plays an important role in the natural defense against cancer.

From generation to generation, the genetic material needs to be transmitted through the germline, where germ cells produce sperm and egg cells. The maintenance of the genome in germ cells is thus a prerequisite for the survival of the species. While germ cells continue their lives endlessly as they carry the genetic information to future generations, the somatic tissues (all non-reproductive cells of the body) function as their ever-ageing carriers. But how does the whole organism respond when the genome of germ cells is damaged thus preventing them from generating offspring?

In the current issue of Nature, Björn Schumacher’s group at the Excellence Cluster for Ageing Research at the University of Cologne reports a novel type of interplay between the germline and the somatic tissues. Strikingly, they found that the immune system alerts the body when germ cells are damaged. The scientists revealed that when the genome of germ cells is damaged, somatic tissues respond by elevated resistance to various stress factors. The increased stress resistance makes the somatic tissues more durable and enables the body to survive the stress longer, thus “buying” time to postpone progeny production until the germ cells have repaired their DNA.

The Cologne biologists identified the novel influence of the germline on somatic tissues by studying the simple nematode worm Caenorhabditis elegans. The worm is widely used as important model system because many biological processes that are relevant to human health are also present. Germ cells halt their activity when their genomes are damaged, thus halting offspring production. Schumacher’s team observed that the damaged germ cells produce innate immune factors that are normally secreted in the intestine when the worms have ingested pathogens. Indeed, the innate immune response to DNA damage in the germ cells made the worms more resistant to pathogen infection. In addition, the somatic tissues became highly durable even under environmental stress conditions. Furthermore, in the somatic tissues, the innate immune response led to elevated quality control of proteins, which contributed to this increased stress resistance. The scientists named this new phenomenon “germline DNA damage-induced systemic stress resistance” (GDISR).

The activation of innate immune responses to DNA damage is relevant for fighting cancer cells in humans. DNA damage in somatic human cells can lead to mutations that can transform cells into cancer cells. The human immune system reacts to the damaged cells in the body by eliminating them; however, some cancer cells acquire mutations that allow them to disguise themselves from the immune system and continue to grow. The new results from the Schumacher group provide a basis for the investigation of innate immune responses to DNA damage in a very simple biological system. These mechanisms might then enable the development of therapies that activate the immune system to effectively eliminate cancer cells.

It will be particularly interesting to investigate how the human body responds when the germ cells’ genomes are compromised. The foundation is now laid for better understanding how the human body responds to DNA damage in germ cells and how the reproductive capacity might be prolonged when germ cells require time to repair their genome.

Christoph Wanko | idw
Further information:
http://cecad.uni-koeln.de/

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>