Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A hot species for cool structures

22.07.2011
Complex proteins in 3D thanks to simple heat-loving fungus

A fungus that lives at extremely high temperatures could help understand structures within our own cells. Scientists at the European Molecular Biology Laboratory (EMBL) and Heidelberg University, both in Heidelberg, Germany, were the first to sequence and analyse the genome of a heat-loving fungus, and used that information to determine the long sought 3-dimensional structure of the inner ring of the nuclear pore. The study was published today in Cell.

The fungus Chaetomium thermophilum lives in soil, dung and compost heaps, at temperatures up to 60ºC. This means its proteins – including some which are very similar to our own – have to be very stable, and the Heidelberg scientists saw this stability as an advantage.

“There are a number of structures that we couldn’t study before, because they are too unstable in organisms that live at more moderate temperatures,” explains Peer Bork, who led the genome analysis at EMBL. “Now with this heat-loving fungus, we can.”

The scientists compared the fungus’ genome and proteome to those of other eukaryotes – organisms whose cells have a nucleus – and identified the proteins that make up the innermost ring of the nuclear pore, a channel that controls what enters and exits a cell’s nucleus. Having identified the relevant building blocks, the scientists determined the complex 3D structure of that inner ring for the first time.

“This work shows the power of interdisciplinary collaborations,” says Ed Hurt, who led the structural and biochemical analyses at Heidelberg University: “the nuclear pore is an intricate biological puzzle, but by combining bioinformatics with biochemistry and structural biology, we were able to solve this piece of it for the first time.”

The scientists have made C. thermophilum’s genome and proteome publicly available, and are confident that these will prove valuable for studying other eukaryotic structures and their interactions, as well as general adaptations to life in hot places. Such knowledge could potentially lead to new biotechnology applications.

Source Article
Amlacher, S., Sarges, P., Flemming, D., van Noort, V., Kunze, R., Devos, D.P., Arumugam, M., Bork, P. & Hurt, E. Insight into Structure and Assembly of the Nuclear Pore Complex by Utilizing the Genome of a Eukaryotic Thermophile. Cell, 22 July 2011.

Press Contact
Sonia Furtado
EMBL Press Officer, Meyerhofstraße 1, 69117 Heidelberg, Germany
Tel: +49 6221 387-8263
E-mail: sonia.furtado@embl.de
Policy regarding use
Press and Picture Releases
EMBL press and picture releases including photographs, graphics, movies and videos are copyrighted by EMBL. They may be freely reprinted and distributed for non-commercial use via print, broadcast and electronic media, provided that proper attribution to authors, photographers and designers is made.

Sonia Furtado | EMBL Research News
Further information:
http://www.embl.de

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>