Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Hint of Frog in the Air

24.01.2012
Macrolides are volatile pheromones from Madagascar frogs

Amphibians are at home in water, but can they also sense volatile compounds in the air? “Indeed they can,” reports Stefan Schulz. Working with colleague Miguel Vences and Ph.D. students Dennis Poth and Katharina Wollenberg at the University of Brunswick, he has found volatile pheromones in frogs from Madagascar. In the journal Angewandte Chemie, the scientists have now introduced various natural compounds that the frogs apparently use for communication.


“Anuran amphibians communicate primarily by means of acoustic, optical, and tactile signals,” explains Schulz. “In addition, they also seem to communicate through peptides and proteins that easily dissolve in water or on the water’s surface. There have recently been indications that frogs may also respond to volatile signal compounds.”

Schulz and his co-workers have now examined frogs from Madagascar (Mantellidae), a very species-rich family of frogs from the rainforests. The males of one subspecies, the Mantellinae, form large characteristic glands on the undersides of their rear shanks.

The function of these glands was not previously known, but they could be related to pheromonal communication. Schulz and his colleagues now report a surprising discovery: “The glands contain volatile, nonpeptidic compounds that act as pheromones and are structurally related to volatile insect secretions.”

In the glands of the frog Mantidactylus multiplicatus, the researchers found two volatile main components, and demonstrated that the frogs react to both substances. One of the components is an alcohol, the other a macrolide, a ring-shaped molecule with an intramolecular ester group.

It is related to phoracantholide J, a component of the defensive secretion of the Australian beetle Phoracantha synonyma. However, the spatial arrangement of the atoms is different: the frog macrolide is the mirror image of the beetle molecule. For identification purposes, Schulz’s team developed a new synthetic route for the production of phoracantholide J that delivers enantiomerically pure products, either only the original version or the mirror image. Their method is also less complicated than earlier approaches.

The researchers found similar macrolides in the glands of related frogs. For example, in the species Gephyromantis boulengeri, they discovered a previously unknown macrolide that they named gephyromantolid A. “In fact, volatile compounds are widespread among the Mantellinae, but occur in species-specific mixtures,” says Schulz. “The volatile compounds could play a previously underrated role in species recognition over short distances in these very species-rich communities.”

This could explain the extreme degree of species diversity of frogs in the tropical rainforest. With over 100 species per region in Madagascar, chemical recognition of species could help to avoid failed pairings that lead to nonviable offspring. Such macrolides could thus have a significant influence on the speciation and evolution of tropical amphibians.

About the Author
Dr. Stefan Schulz is Professor of Organic Chemistry at the Technische Universität Braunschweig, where he is Director of the Institute for Organic Chemistry. His research interests include the chemistry of signal substances, natural materials chemistry, and environmental chemistry. He is particularly interested in the pheromones of insects, arachnids, reptiles amphibians, and bacteria.
Author: Stefan Schulz, Technische Universität Braunschweig (Germany), http://aks7.org-chem.nat.tu-bs.de/HTML/Mitarbeiter/aksss.html
Title: Volatile Amphibian Pheromones: Macrolides of Mantellid Frogs From Madagascar

Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201106592

Stefan Schulz | Angewandte Chemie
Further information:
http://pressroom.angewandte.org

Further reports about: Ambient Air Angewandte Chemie CHEMISTRY Frog Madagascar

More articles from Life Sciences:

nachricht Decoding the genome's cryptic language
27.02.2017 | University of California - San Diego

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>