Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Hint of Blackcurrant

19.05.2011
Olfactory properties and gas-phase structures of Cassyrane stereoisomers

Upon testing different fragrances in a perfumery, the so-called top note, consisting of the most volatile odorants, is what characterizes a scent. These odorants determine the first and often most decisive impression of a perfume.

Blackcurrant, or cassis, scent is one of the most sophisticated and elegant fruity top notes, and is fashionable since “DKNY Be Delicious”. A team from the RWTH in Aachen (Germany) and Givaudan Schweiz AG has now taken a close look at the blackcurrant odorant Cassyrane. As the scientists led by Wolfgang Stahl and Philip Kraft report in the journal Angewandte Chemie, there are specific structural features that key the cassis scent.

In addition to their two classic scents, ”Cassis Base 345B” and ”Corps Cassis”, in April 2010 Givaudan introduced a new captive ingredient Cassyrane; this substance imparts a natural, juicy cassis odor with aspects of cassis sorbet upon the top note of a perfume. Cassyrane consists of different so-called isomeric molecules that are of identical atomic composition, but have different spatial arrangements.

When four different atoms are bound to a carbon atom, there are two different ways for these to be arranged relative to each other in space. These two possible structures are mirror images of each other. Natural substances often have several such chiral centers. In scents, each of the possible combinations, known as stereoisomers, can have a different odor that can also be more or less intense. Cassyrane has two chiral centers, which gives it four possible stereoisomers.

Because the cassis odor of the other cassis scents distinctly depends on the configurations of the molecules, the researchers wanted to investigate the scent properties of the individual Cassyrane stereoisomers. They also examined the stereoisomers of the dihydro derivative, a compound of nearly identical structure that also smells of cassis but is missing the double bond found in the Cassyrane molecule.

It was first necessary to synthesize pure forms of each stereoisomer by means of clever procedures. It turns out that not all of the isomers smell of cassis. In both compounds, an R configuration at carbon number 5 elicits a character reminiscent of Provencal herbs like rosemary, while isomers with the 5S configuration had the fruity odor of cassis. The stereocenter at carbon number 2 has a strong influence on the intensity of the odor.

A molecule is a flexible structure; its atomic groups can twist and bend in various ways relative to each other. The researchers wished to determine which of these spatial structures is preferentially adopted by each of these stereoisomers in the gas phase. They were able to achieve this by examining the molecular rotations by means of microwave spectroscopy and combining these results with quantum chemical calculations. When the calculated structures were overlaid with those of the stereoisomers in the classical scents the result was clear: a very specific configuration does seem to be important for the cassis character of the scents.

Author: Philip Kraft, Givaudan Schweiz AG, Dübendorf (Switzerland), mailto:philip.kraft@givaudan.com
Title: Cassis Odor through Microwave Eyes: Olfactory Properties and Gas-Phase Structures of all the Cassyrane Stereoisomers and its Dihydro Derivatives

Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201100937

Philip Kraft | Angewandte Chemie
Further information:
http://www.givaudan.com
http://pressroom.angewandte.org.

More articles from Life Sciences:

nachricht Antimicrobial substances identified in Komodo dragon blood
23.02.2017 | American Chemical Society

nachricht New Mechanisms of Gene Inactivation may prevent Aging and Cancer
23.02.2017 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>