Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


A High-Yield Biomass Alternative for Making Chemicals

A team of University of Massachusetts Amherst chemical engineers report in today’s issue of Science that they have developed a way to produce high-volume chemical feedstocks including benzene, toluene, xylenes and olefins from pyrolytic bio-oils, the cheapest liquid fuels available today derived from biomass. The new process could reduce or eliminate industry’s reliance on fossil fuels to make industrial chemicals worth an estimated $400 billion annually.

Instead of buying petroleum by the barrel, chemical manufacturers will now be able to use relatively cheaper, widely available pyrolysis oils made from waste wood, agricultural waste and non-food energy crops to produce the same high-value materials for making everything from solvents and detergents to plastics and fibers.

As principal investigator George Huber, associate professor of chemical engineering at UMass Amherst, explains, “Thanks to this breakthrough, we can meet the need to make commodity chemical feedstocks entirely through processing pyrolysis oils. We are making the same molecules from biomass that are currently being produced from petroleum, with no infrastructure changes required.”

He adds, “We think this technology will provide a big boost to the economy because pyrolysis oils are commercially available now. The major difference between our approach and the current method is the feedstock; our process uses a renewable feedstock, that is, plant biomass. Rather than purchasing petroleum to make these chemicals, we use pyrolysis oils made from non-food agricultural crops and woody biomass grown domestically. This will also provide United States farmers and landowners a large additional revenue stream.”

In the past, these compounds were made in a low-yield process, the chemical engineer adds. “But here we show how to achieve three times higher yields of chemicals from pyrolysis oil than ever achieved before. We’ve essentially provided a roadmap for converting low-value pyrolysis oils into products with a higher value than transportation fuels.”

In the paper, he and doctoral students Tushar Vispute, Aimaro Sanno and Huiyan Zhang show how to make olefins such as ethylene and propylene, the building blocks of many plastics and resins, plus aromatics such as benzene, toluene and xylenes found in dyes, plastics and polyurethane, from biomass-based pyrolysis oils. They use a two-step, integrated catalytic approach starting with a “tunable,” variable-reaction hydrogenation stage followed by a second, zeolite catalytic step. The zeolite catalyst has the proper pore structure and active sites to convert biomass-based molecules into aromatic hydrocarbons and olefins.

Huber, Vispute and colleagues discuss how to choose among three options including low- and high-temperature hydrogenation steps as well as the zeolite conversion for optimal results. Their findings indicate that “the olefin-to-aromatic ratio and the types of olefins and aromatics produced can be adjusted according to market demand.” That is, using the new techniques, chemical producers can manage the carbon content from biomass they need, as well as hydrogen amounts. Huber and colleagues provide economic calculations for determining the optimal mix of hydrogen and pyrolytic oils, depending on market prices, to yield the highest-grade product at the lowest cost.

A pilot plant on the UMass Amherst campus is now producing these chemicals on a liter-quantity scale using this new method. The technology has been licensed to Anellotech Corp., co-founded by Huber and David Sudolsky of New York City. Anellotech is also developing UMass Amherst technology invented by the Huber research team to convert solid biomass directly into chemicals. Thus, pyrolysis oil represents a second renewable feedstock for Anellotech.

Sudolsky, Anellotech’s CEO, says, “There are several companies developing technology to produce pyrolysis oil from biomass. The problem has been that pyrolysis oils must be upgraded to be useable. But with the new UMass Amherst process, Anellotech can now convert these pyrolysis oils into valuable chemicals at higher efficiency and with very attractive economics. This is very exciting.”

David Sudolsky | Newswise Science News
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>